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Bioverse, Release 1.0

Bioverse is a Python package for simulating the results of a statistical survey of the properties of nearby terrestrial
exoplanets via direct imaging or transit spectroscopy. An in-depth outline of the underlying statistical framework and
examples of how it can be applied to astrophysics mission concepts is given in Bixel & Apai (2021). Readers are
strongly encouraged to review this paper before proceeding. This documentation covers the Python implementation
of Bioverse, but does not review many of its underlying statistical assumptions.

The Overview section describes the code’s structure and primary classes and should be reviewed first. Following that,
the Examples section offers step-by-step examples for producing some of the results published in the paper, as well as
ways to modify and expand upon the code. Most of these examples are also available as interactive Jupyter notebooks
in the Notebooks directory of the GitHub repository.
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ONE
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Bioverse was developed with support from the following grants and collaborations:

• Alien Earths & Earths in Other Solar Systems

• NASA Earth and Space Science Fellowship Program (grant No. 80NSSC17K0470)

• NASA’s Nexus for Exoplanet System Science (NExSS)

3

https://ui.adsabs.harvard.edu/abs/2021AJ....161..228B/abstract
https://github.com/dfm/emcee
https://github.com/joshspeagle/dynesty
http://eos-nexus.org/


Bioverse, Release 1.0

4 Chapter 1. References & Acknowledgements



CHAPTER

TWO

INSTALLATION

Bioverse can be cloned from its GitHub repository:

git clone https://www.github.com/abixel/bioverse/

To install Bioverse, navigate to the directory containing setup.py and run:1

pip install .

1 Bioverse will be added to PyPI in a future update.

5
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CHAPTER

THREE

DEPENDENCIES

Bioverse is compatible with Python 3.7+. It has the following dependencies, all of which can be installed using pip:

• astroquery

• dynesty

• emcee

• matplotlib

• numpy

• scipy

• tqdm (optional: provides a progress bar for long processes)

• pandas (optional: used for data visualization)

• PyQt5 (optional: enables configuration GUI)

3.1 Introduction

Bioverse can be split into three primary components:

• The first module combines planet occurrence rates with empirical and hypothetical relationships between planet
properties to produce a statistically realistic simulation of planetary systems in the solar neighborhood.

• The second module simulates a dataset (with uncertainties) that might be produced by an extensive direct imaging
or transit spectroscopy survey of this exoplanet population.

• The third module applies statistical hypothesis tests to the simulated dataset in an attempt to uncover statistical
relationships injected by the first module.

By iterating over these three modules as shown below, Bioverse can evaluate the potential of next-generation exoplanet
surveys to answer key questions about exoplanet statistics.

7
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3.2 The Table class

Bioverse uses the Table class to manage large simulated datasets across the code. Each row in the Table corresponds
to a different simulated planet, while each column corresponds to a planetary parameter. Generally, rows correspond
to indices while columns correspond to string keys. Some examples for selecting data in a table:

# Returns semi-major axis for every planet
table['a']

# Returns the mass of the tenth planet
table['M'][9]

# Returns all parameters for the first 50 planets
table[:50]

A Table is somewhat similar to a Pandas DataFrame. Indeed, if Pandas is installed, the Table will be displayed as one.
To export a Table as a Pandas DataFrame, we can use the to_pandas() method:

8 Chapter 3. Dependencies
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table.to_pandas()

d M_st R_st L_st T_eff_st SpT ... N_pl order R ␣
→˓ P a S
0 13.779 0.891276 0.912031 0.668409 5469.6313 G ... 1 0 2.279597 ␣
→˓680.071360 1.456531 0.315067
1 17.990 1.368140 1.285004 2.995380 6704.4496 F ... 1 0 1.603131 ␣
→˓4461.320947 5.887965 0.086402
2 21.648 1.384050 1.296945 3.119100 6741.3827 F ... 1 0 3.114289 ␣
→˓13.869061 0.125901 196.776529
3 17.565 0.892344 0.912906 0.671218 5472.7466 G ... 1 0 1.246218 ␣
→˓303.569497 0.851064 0.926700
4 3.563 0.397945 0.478474 0.039754 3729.2254 M ... 4 0 2.560260 ␣
→˓645.564506 1.075260 0.034384
.. ... ... ... ... ... .. ... ... ... ... ␣
→˓ ... ... ...
517 5.905 0.353798 0.435516 0.026342 3526.6437 M ... 5 2 2.587812 ␣
→˓128.221803 0.351970 0.212635
518 5.905 0.353798 0.435516 0.026342 3526.6437 M ... 5 3 0.802393 ␣
→˓165.421708 0.417119 0.151400
519 5.905 0.353798 0.435516 0.026342 3526.6437 M ... 5 4 5.704183 ␣
→˓311.476887 0.636036 0.065115
520 10.908 0.763220 0.805601 0.388396 5081.1400 K ... 2 0 1.343379 ␣
→˓1518.340450 2.362701 0.069576
521 10.908 0.763220 0.805601 0.388396 5081.1400 K ... 2 1 0.513268 ␣
→˓30.733272 0.175483 12.612595

[522 rows x 22 columns]

Each planet or stellar property is referred to throughout Bioverse by a unique string key. This formalism allows prop-
erties to be easily accessed across the code. The keys are not formally defined anywhere in the code, so creating a new
property is as simple as adding it to a Table of planets:

# Assigns a random ocean covering fraction to every planet in the Table
table['f_ocean'] = np.random.uniform(0, 1, len(t))

This new column must have the same length as others in the Table. Some other examples of Table usage:

# Change the value of `f_ocean` to zero for planets that are not exo-Earth candidates
EEC = table['EEC'] # boolean array
table['f_ocean'][~EEC] = 0.

# Calculate planet densities in g/cm3
table['rho'] = 5.51 * table['M'] / table['R']**3

# List the definition of all keys in the table (found in legend.dat)
table.legend()

# Append one table to another in-place
table.append(table2, inplace=True)

See the Table documentation for a full list of its methods.

3.2. The Table class 9
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3.2.1 List of properties

The following table lists all keys currently used in Bioverse and the properties they correspond to:

3.3 Generating planetary systems

3.3.1 The Generator class

Bioverse uses the Generator class to generate planetary systems in the solar neighborhood. A Generator object
specifies a list of functions to be performed in sequential order onto a shared Table. For example, a simple generator
might implement this algorithm:

• Function 1: Return the Gaia DR2 catalog of all stars within 30 parsecs with effective temperatures above 4000
K.

• Function 2: Simulate one or more planets around each star according to the occurrence rate estimates in Bergsten
et al. 2022.

• Function 3: Evaluate the mass of each planet based on its radius and the mass-radius relationship published by
Wolfgang et al. (2016).

The generator will feed the output of Function 1 into Function 2, then the output of Function 2 into Function 3, and
finally will return the output of Function 3 (i.e. a table of planets with known masses, radii, orbital properties, and host
star properties).

Bioverse “ships” with two Generators: one for transit mode, and the other for imaging mode. The primary difference
between the two is that the former uses the Chabrier (2003) stellar mass function to generate host stars, while the latter
uses an optimized host star catalog for the LUVOIR direct imaging mission (see the LUVOIR Final Report). The
following code demonstrates how to simulate a sample of planets using the imaging mode Generator:

from bioverse.generator import Generator
generator = Generator('imaging')
sample = generator.generate()

We can inspect the Generator to see which functions it implements:

# List the generator's steps
generator

Generator with 11 steps:
0: Function 'read_stellar_catalog' with 5 keyword arguments.
1: Function 'create_planets_bergsten' with 7 keyword arguments.
2: Function 'assign_orbital_elements' with 1 keyword arguments.
3: Function 'impact_parameter' with 1 keyword arguments.
4: Function 'assign_mass' with no keyword arguments.
5: Function 'compute_habitable_zone_boundaries' with no keyword arguments.
6: Function 'classify_planets' with no keyword arguments.
7: Function 'geometric_albedo' with 2 keyword arguments.
8: Function 'effective_values' with no keyword arguments.
9: Function 'Example1_water' with 3 keyword arguments.
10: Function 'Example2_oxygen' with 2 keyword arguments.

Each of these functions is documented under the functions module.

10 Chapter 3. Dependencies
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3.3.2 Passing keyword arguments

Many of the functions in the Generator accept keyword arguments that affect the properties of the simulated sample.
For example, the create_planets_bergsten() function scales the planet occurrence rates uniformly in response to
its keyword argument f_eta. To change the value of f_eta, simply pass it to generate() as follows:

sample = generator.generate(f_eta=1.5)

Note that this value will be passed to any function in the generator for which f_eta is an argument. This can be
useful for sharing arguments across multiple functions, but be careful not to accidentally use the same keywords for
two different functions.

3.3.3 Transit mode

One of Bioverse’s main functions is to evaluate the sample size of a transiting exoplanet survey. However, most planets
do not transit their stars, so simulating their properties would be inefficient. The argument transit_mode can be used
to address this:

sample = generator.generate(transit_mode=True)

If True, then only planets that transit their stars are simulated.

3.3.4 Adding new functions

You can extend a generator by writing your own functions to simulate new planetary properties. Each function must
accept a Table as its first and only required argument, can accept any number of keyword arguments, and must return
a Table as its only return value.

For example, the following function will assign a random ocean covering fraction to Earth-sized planets in the habitable
zone (exo-Earth candidates or “EECs”), while non-EECs will have no oceans.

def make_oceans(table, f_ocean_min=0.05, f_ocean_max=0.8):
# f_ocean=0 for all planets
table['f_ocean'] = np.zeros(len(table))

# f_ocean_min < f_ocean < f_ocean_max for EECs
EECs = table['EEC']
table['f_ocean'][EECs] = np.random.uniform(f_ocean_min, f_ocean_max, EECs.sum())

return table

Save this function in custom.py and insert it into the Generator as follows:

generator.insert_step('make_oceans')

You can then simulate a sample of planets with oceans for arbitrary values of f_ocean_min and f_ocean_max:

sample = generator.generate(f_ocean_min=0.3, f_ocean_max=0.7)

You might also want to replace an existing step in the Generator with your own alternative. For example, suppose
we want to replace the function that assigns planet masses (step 4: assign_mass()) with one that implements the
mass-radius relationship of Weiss & Marcy (2014). First, define a function Weiss_Marcy_2014() in custom.py that
implements this relationship using the format above. Next, we can replace step 4 with the new function:

3.3. Generating planetary systems 11
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# Remove step 4 and replace it with the new mass-radius relationship
del generator.steps[4]
generator.insert_step('Weiss_Marcy_2014', 4)

Note that the function Weiss_Marcy_2014() should also compute the density and surface gravity of each planet as
assign_mass() currently does.

3.3.5 Saving and loading

You can save the modified version of a Generator under a new name:

generator.save('imaging_with_oceans')

and load it as follows:

generator = Generator('imaging_with_oceans')

3.4 Simulating survey datasets

3.4.1 The Survey class

The output of generate() is a Table containing the values of several parameters for planets within the bounds of the
simulation. However, only a subset of these will be detectable by a transit or direct imaging survey. For those planets,
only a subset of their properties can be directly probed, and only with a finite level of precision. Module 2 captures
these details by simulating the observing limits and measurement precision of a direct imaging or transit spectroscopy
survey of the planet population.

The survey simulation module is implemented by the Survey class1 and its children classes ImagingSurvey and
TransitSurvey. The Survey describes several key components of an exoplanet survey including:

• diameter: the diameter of the telescope primary in meters (or the area-equivalent diameter for a telescope array)

• t_slew: slew time between observations, in days

• ImagingSurvey

– inner_working_angle and outer_working_angle: IWA/OWA of the coronagraphic imager

– contrast_limit: log-contrast limit (i.e. faintest detectable planet)

• TransitSurvey

– N_obs_max: maximum allowable number of transit observations per target

– t_max: maximum amount of time across which to combine transit observations, in days

• T_st_ref, R_st_ref, and d_ref: temperature (Kelvin), radius (𝑅⊙), and distance (parsec) of the reference
star (see Exposure time calculations)

• D_ref: diameter of the reference telescope, in meters

Each type of survey “ships” with a default configuration:

1 Survey should never be called directly; instead ImagingSurvey or TransitSurvey should be used.

12 Chapter 3. Dependencies
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from bioverse.survey import ImagingSurvey, TransitSurvey
survey_imaging = ImagingSurvey('default')
survey_transit = TransitSurvey('default')

The default imaging survey is modeled after LUVOIR-A, with a coronagraphic imager and 15-meter primary aperture.
The default transit survey is modeled after the Nautilus Space Observatory, with a 50-meter equivalent light-collecting
area.

3.4.2 Which planets are detectable?

Given a simulated set of planets to observe, the Survey first determines which of these are detectable. For a
TransitSurvey, this set consists of all transiting planets, while for an ImagingSurvey, it consists of all planets
within the coronagraphic IWA/OWA and brighter than the limiting contrast. This can be invoked as follows

detected = survey_imaging.compute_yield(sample)

3.4.3 Conducting measurements

The Survey will conduct a series of measurements on the detectable planet sample, each defined by a Measurement
object. A Measurement’s parameters include:

• key: the name of the planet property to be measured

• precision: the relative or absolute precision of the measurement (e.g. 10% or 0.1 AU)

• t_ref: the amount of time in days required to conduct this measurement for a typical target (see below)

• t_total: the amount of survey time in days allocated toward this measurement

• wl_eff: the effective wavelength of observation in microns

• priority: a set of rules describing how targets are prioritized (described below)

To conduct these measurements and produce a dataset:

data = survey_imaging.observe(detected)

3.4.4 Quick-run

In total, to produce a simulated sample of planets, determine which planets are detectable, and produce a mock dataset
requires the following:

from bioverse.generator import Generator
from bioverse.survey import ImagingSurvey

generator = Generator('imaging')
survey = ImagingSurvey('default')

sample = generator.generate(eta_Earth=0.15)
detected = survey.compute_yield(sample)
data = survey.observe(detected)

The last three lines can be combined into the following:

3.4. Simulating survey datasets 13
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sample, detected, data = survey.quickrun(generator, eta_Earth=0.15)

quickrun() will pass any keyword arguments to the generate() method, and will by default pass
transit_mode=True for a TransitSurvey.

3.4.5 Exposure time calculations

Spectroscopic observations of exoplanets are time-consuming, and for some surveys the amount of time required to
conduct them will be a limiting factor on sample size. To accomodate this, Bioverse calculates the exposure time 𝑡𝑖
required to conduct the spectroscopic measurement for each planet, then prioritizes each planet according to 𝑡𝑖 as well
as its weight parameter (see Target prioritization). In the simulated dataset, planets that could not be observed within
the total allotted time t_total will have nan values for the measured value.

A Measurement’s “reference time”, t_ref, is the exposure time required to perform the measurement for an Earth-like
planet (receiving the same flux as Earth) orbiting a typical star (whose properties are defined by the Survey parameters
T_st_ref, R_st_ref, and d_ref), with a telescope of diameter D_ref. For the default imaging survey, the typical
target orbits a Sun-like star at a distance of 10 pc, while for the transit survey, the host star is a mid-M dwarf.

Bioverse uses t_ref, along the wavelength of observation wl_eff, to determine the exposure time t_i required for
each individual planet with the following equation:

𝑡𝑖
𝑡ref

= 𝑓𝑖

(︂
𝑑𝑖
𝑑ref

)︂2 (︂
𝑅*

𝑅*,ref

)︂−2 (︂
𝐵(𝜆eff, 𝑇*,𝑖)

𝐵(𝜆eff, 𝑇*,ref)

)︂−1 (︂
𝐷

𝐷ref

)︂−2

𝑓𝑖 encompasses the different factors affecting spectroscopic signal strength in imaging and transit mode:

𝑓 imaging
𝑖 =

(︂
𝜁𝑖
𝜁⊕

)︂−1

𝑓 transit
𝑖 =

(︂
ℎ𝑖

ℎ⊕

)︂−2 (︂
𝑅𝑝,𝑖

𝑅⊕

)︂−2 (︂
𝑅*,𝑖

𝑅*,ref

)︂4

Importantly, this calculation is conducted for each Measurement with a different value of t_ref. Therefore, the same
planet may have real values for one Measurement and ``nan`` for another. This is particularly relevant for the transit
survey, where the total number of transiting planets for which e.g. planet size and orbital period can be measured is
much larger than the number that can be spectroscopically characterized. To return just the subset of detected planets
that were observed for a given Measurement, use the observed() method:

observed = data.observed('has_O2')

The determination of t_ref often relies on radiative transfer and instrument noise estimates that are generally not done
in Bioverse. It can be accomplished by citing relevant studies in the literature or using third-party tools such as the
Planetary Spectrum Generator. One method of calculating t_ref for the transit survey is demonstrated in Tutorial 3:
Calculating exposure times.

Bioverse can calculate t_ref given two simulated spectra files - one with and one without the targeted absorption
feature - both of which contain measurements for wavelength, flux, and flux uncertainty as the first three columns. You
must also specify the simulated exposure time and the minimum and maximum wavelengths for the absorption feature.
The compute_t_ref() function will then determine the exposure time required for a 5-sigma detection (in the same
units as the input exposure time).

from bioverse.util import compute_t_ref

# Scales from simulated spectra for a combined 100 hr exposure time, targeting the O3␣
→˓feature near 0.6 microns.

(continues on next page)

14 Chapter 3. Dependencies
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(continued from previous page)

t_ref = compute_t_ref(filenames=('spectrum_O3.dat', 'spectrum_noO3.dat'), t_exp=100, wl_
→˓min=0.4, wl_max=0.8)
print("Required exposure time: {:.1f} hr".format(t_ref))

Output: Required exposure time: 73.9 hr

Finally, change the t_ref and wl_eff attributes of the associated Measurement object, using units of days and microns
respectively:

survey = TransitSurvey('default')
survey.measurements['has_O2'].t_ref = 73.9/24
survey.measurements['has_O2'].wl_eff = 0.6

3.4.6 Target prioritization

For measurements where t_total is finite and t_ref is non-zero, targets must be prioritized in case there is insuffi-
cient time to characterize all of them. In Bioverse, target prioritization depends both on the target’s scientific interest
(quantified by the weight parameter w_i) and the amount of time t_i required to properly characterize it. Each target’s
priority is calculated as follows:

𝑝𝑖 = 𝑤𝑖/𝑡𝑖

Bioverse will observe targets in order of decreasing p_i until t_total has been exhausted. The resulting dataset will
fill in nan values for any targets that were not observed.

By default, w_i = 1 for all targets, but it can be raised or lowered for planets that meet certain criteria. For example,
to assign w_i = 5 for targets with radii between 1-2 𝑅⊕:

m = survey.measurement['has_O2']
m.set_weight('R', weight=5, min=1, max=2)

To exclude a set of targets, set w_i = 0. For example, to restrict a measurement to exo-Earth candidates only:

m.set_weight('EEC', weight=0, value=False)

In transit mode, targets are weighted by 𝑎/𝑅* to correct the detection bias toward shorter period planets. To disable
this feature:

m.debias = False

3.5 Hypothesis testing

3.5.1 The Hypothesis class

The combined result of the first two modules is a simulated dataset representing the output of the exoplanet survey.
The third module addresses the power of that dataset for testing statistical hypotheses. The first step in this exercise
involves defining the hypotheses you want to test, and in Bioverse this is done via a Hypothesis object. To define a
Hypothesis requires:

• a set of dependent variable(s) X, called features

• a set of independent variable(s) Y, called labels

3.5. Hypothesis testing 15
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• a set of parameters theta

• a Python function describing the quantitative relationship between X and Y in terms of theta

• the prior distribution of values of theta

• an alternative (or null) hypothesis against which to test

For example, consider the hypothesis that planet mass and radius can be related by a simple power law: 𝑀(𝑅|𝑀0, 𝛼) =
𝑀0𝑅

𝛼. In this case, X = R, Y = M, and theta = (M_0, alpha).

The first step in defining this hypothesis is to write out the function Y = f(X | theta):

def f(theta, X):
M_0, alpha = theta
R, = X
return M_0 * R ** alpha

params = ('M_0', 'alpha')
features = ('R',)
labels = ('M',)

The tuples features and labels tell the code which parameters to extract from the simulated dataset. In this case,
planet radius (R) and mass (M) will be extracted from the simulated dataset as the features and labels.

We must define the bounds on values for M_0 and alpha - conservative constraints might be 0.1 < M_0 < 10 and 2 <
alpha < 5. We will also choose a log-uniform distribution for M_0, as its bounds span a few orders of magnitude.

bounds = np.array([[0.1, 10], [2, 5]])
log = (True, False)

Next, we can initialize the Hypothesis:

from bioverse.hypothesis import Hypothesis
h_mass_radius = Hypothesis(f, bounds, params=params, features=features, labels=labels,␣
→˓log=log)

3.5.2 The null hypothesis

In order to test the evidence in favor of h_mass_radius, we must define an alternative (or “null”) hypothesis1. In this
case, the hypothesis states that planetary mass is independent of radius, and ranges from 0.01 and 100 M_Earth (with
average value M_random):

def f_null(theta, X):
shape = (np.shape(X)[0], 1)
return np.full(shape, theta)

bounds_null = np.array([[0.01, 100]])
h_mass_radius.h_null = Hypothesis(f_null, bounds, params=('M_random',), log=(True,))

1 Note that bioverse.hypothesis.f_null() provides the same function as f_null() above but for an arbitrary number of parameters,
features, and labels.
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3.5.3 Testing the hypothesis

Next, we can test h_mass_radius using a dataset from the previous examples:

results = h_mass_radius.fit(data)

The fit() method will pull the measured values of ‘R’ and ‘M’ and test them using one or more of the following
methods (set by the method keyword):

• method = dynesty (default) Uses nested sampling to sample the parameter space of theta and compute the
Bayesian evidence for both the Hypothesis and the null hypothesis. Implemented by dynesty.

• method = emcee Uses Markov Chain Monte Carlo to sample the parameter space of theta. Implemented by
emcee.

• method = mannwhitney Assuming X to be a single continuous variable and Y a single boolean, reports the
probability that X[Y] and X[~Y] are drawn from the same parent distribution. Implemented by scipy.

By default, nested sampling is used to estimate the Bayesian evidence in favor of the Hypothesis in comparison to the
null hypothesis.

3.5.4 Likelihood functions

Both dynesty and emcee require a Bayesian likelihood function to be defined. The likelihood function is proportional
to the probability that Y would be drawn given X and a set of values for theta. Currently, two likelihood functions are
supported:

• binomial: If Y is a single boolean parameter (e.g., ‘has_H2O’) then f is interpreted as the likelihood that Y ==
1 given X. In this case the likelihood function is:

lnℒ =
∑︀

𝑖 ln (𝑌𝑖𝑓(𝑋|𝜃) + (1− 𝑌𝑖)𝑓(𝑋|𝜃))

• multivariate: If Y is one or more continuous variables then f is interpreted as the expectation values of Y given
X. In this case the likelihood function is the multivariate Gaussian:

lnℒ =
∑︀

𝑖

[︀
−(𝑌𝑖 − 𝑓(𝑋|𝜃))2/(2𝜎2

𝑖 )
]︀

3.5.5 Prior distributions

The prior distributions of the parameters theta can be set to either uniform or log-uniform functions or defined by the
user2. For uniform and log-uniform, only the boundaries of these distributions must be given:

# For theta = (M_0, alpha)
bounds = np.array([[0.1, 10], [2, 5]])

# Log-uniform distribution for M_0, uniform distribution for alpha
h_mass_radius = Hypothesis(f, bounds, log=(True, False))

Non-uniform prior distributions can be defined by the user, but they must be given in the proper format for both dynesty
and emcee:

h_mass_radius = Hypothesis(f, bounds, tfprior_function=tfprior, lnprior_function=lnprior)

For more details on how to define tfprior() and lnprior(), see the documentation for dynesty and emcee respec-
tively.

2 Documentation for user-defined priors will be added in a future update.
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3.5.6 Posterior distributions

When using dynesty or emcee, the results object will contain summary statistics of the posterior distributions
for the values of theta, including the mean, median, and lower and upper 95% confidence intervals. Alternatively,
by passing return_chains = True to the fit() method, the entire chain of sampled values will be return. Given
enough time, the distribution of these values will converge onto the posterior distribution. In general, emcee converges
much more efficiently and should be used to estimate (for example) the precision with which model parameters can be
constrai

3.6 Computing statistical power

Consider the “habitable zone hypothesis”, which proposes that habitable planets with atmospheric water vapor will be
more common within the semi-major axis range a_inner < a_eff < a_outer (see Section 6 of the paper and Example
1 for more details). In Bioverse, this effect is injected into the simulated sample by the Example1_water() function,
and tested using the h_HZ Hypothesis. To test this hypothesis using a LUVOIR-like direct imaging survey:

from bioverse.generator import Generator
from bioverse.survey import ImagingSurvey
from bioverse.hypothesis import h_HZ

# Load the Generator and Survey objects
generator = Generator('imaging')
survey = ImagingSurvey('default')

# Generate a set of planetary systems and a simulated dataset as observed by an imaging␣
→˓survey
# Assume 50% of EECs are habitable (f_water_habitable=0.5)
# Assume 1% of non-habitable planets have water vapor (f_water_nonhabitable=0.01)
sample, detected, data = survey.quickrun(generator, f_water_habitable=0.5, f_water_
→˓nonhabitable=0.01)

# Test the habitable zone hypothesis from this dataset
results = h_HZ.fit(data)

print("The evidence in favor of the habitable zone hypothesis is {:.1f}.".format(results[
→˓'dlnZ']))

Output: The evidence in favor of the habitable zone hypothesis is 6.4.

This result corresponds to a “p-value” of ~1.7E-3. However, this represents only one possible realization of the survey.
Due to Poisson uncertainty, another equivalent survey might detect fewer habitable planets and thus be less capable of
testing the hypothesis. To capture this, we can repeat the survey several times and average their results. The analysis
module enables this through its test_hypothesis_grid() function.

from bioverse import analysis

# Repeat the hypothesis test N=30 times with the same assumptions as above
results = analysis.test_hypothesis_grid(h_HZ, generator, survey, N=30, f_water_
→˓habitable=0.5,

f_water_nonhabitable=0.01, processes=8)

# Determine the statistical power assuming a significance threshold of dlnZ > 3
(continues on next page)
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power = analysis.compute_statistical_power(results, method='dlnZ', threshold=3)

print("The statistical power of the survey is {:.1f}%".format(100*power))

Output: The statistical power of the survey is 75.0%.

Under the assumptions that 50% of exo-Earth candidates are habitable and 1% of non-habitable planets have H2O in
their atmospheres, it is 75% likely that a LUVOIR-like survey would be able to detect the overabundance of H2O in
the habitable zone.

3.6.1 Parameter grids

Of course, those assumptions are highly uncertain, and a more thorough analysis should investigate how this result
depends on key model parameters - such as f_water_habitable or eta_Earth. This can be done by passing an
array of values for these parameters to the test_hypothesis_grid() function:

# Vary the fraction of EECs with water vapor from 1% to 100% (log spacing)
f_water_habitable = np.logspace(-2, 0, 5)

# Vary eta Earth from 7.5% to 30% (linear spacing)
eta_Earth = np.linspace(0.075, 0.3, 5)

# Test the hypothesis N=30 times for each parameter combination
results = analysis.test_hypothesis_grid(h_HZ, generator, survey, N=30, f_water_
→˓habitable=f_water_habitable,

eta_Earth=eta_Earth, f_water_nonhabitable=0.01,␣
→˓processes=8)

# Compute the statistical power for each parameter combination
power = analysis.compute_statistical_power(results, method='dlnZ', threshold=3)

power will be a 5x5 array containing the statistical power for each parameter combination. The axis order depends
on the order in which arguments are passed to test_hypothesis_grid(); in this case, f_water_habitable will
correspond to the first axis and eta_Earth to the second.

3.6.2 Plotting the results

The plot_power_grid() function can be used to plot the statistical power over a 2-dimensional grid. Starting from
the above example:

from bioverse.plots import plot_power_grid

# Specify which parameters to plot on the x and y axes
axes = ('f_water_habitable', 'eta_Earth')

# Set the axis labels
labels = ('Fraction of EECs that are habitable', 'eta Earth')

# Set log-scale for the x axis
log = (True, False)

(continues on next page)
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# Create the plot
plot_power_grid(results, axes=axes, labels=labels, log=log)

The number and percentage values of the contour lines can be set with the levels argument, or set levels=None to
disable them. To create a higher resolution plot with smoother contour lines, simply run test_hypothesis_grid()
over a finer grid of parameter values.

3.6.3 Multiprocessing

To compute the statistical power for a 20x20 parameter grid with N=50 simulations in each cell requires 20,000
simulations, or approximately 5-6 hours for the example above. Fortunately, these simulations are entirely inde-
pendent of each other, making parallel processing an effective solution. You can use the processes argument of
test_hypothesis_grid() to indicate how many processes to run in parallel. Note that Bioverse can be memory-
intensive, so large values of processes (e.g. greater than 10) can have diminishing returns or lead to a crash.
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3.7 Object Editor

The object editor is a GUI that allows the user to edit the default Generator and Survey objects and save new con-
figurations. It can be opened as follows:

from bioverse import gui
gui.show()

3.7.1 Editing Generators

To make changes to a Generator object, first load its associated .pkl file using File > Load. This will load the list of
steps performed by the Generator into the upper left box. You can click through each step to see a description of each
function and its arguments on the right:

The lower-left table shows the keyword arguments for the currently-selected function along with their current default
values. To edit the default value, simply double-click and enter a new value. Note that this will update the argument
value for all steps that accept this argument.
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Editing functions

To add a new function to the Generator, first define it in custom.py as described in Adding new functions, then enter
the name of the function using the Add Step button:

The GUI will add your function to the end of the list:

Use the arrow keys to edit the order in which functions are called. Finally, to remove a function from the Generator,
use the Remove Step button.

Once you have made your changes to the Generator, you can save it using File > Save as. . . and use it in Bioverse:

# Loads my_generator.pkl
from bioverse.generator import Generator
generator = Generator('my_generator')
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3.7.2 Editing Surveys

To make changes to an ImagingSurvey or TransitSurvey object, first load its associated .pkl file using File > Load. You
can then edit the Survey’s properties in the top left and add, remove, or re-order measurements in the bottom left.

Select a measurement in the bottom left to view its details on the right side of the interface, including its key parameters
(top right) and prioritization scheme (bottom right).
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Target prioritization

Each measurement assigns a weight to each potential target that determines the order in which it is observed. By
default, all planets have weight = 1. In the image above, for the measurement of ‘has_O2’, planets with younger ages
have higher weight while planets that are not exo-Earth candidates are not observed (weight = 0).

The Add Prioritization button allows you to define a new condition for assigning weight. In the following, we assign
weight = 5 to planets with host star temperatures higher than 3000 K:

3.8 Tutorial 1: Generating planetary systems

In this tutorial, we will review how to use the Generator class to generate a sample of planetary systems, including how
to add or replace steps in the process.

3.8.1 Setup

Let’s start by importing the necessary module from Bioverse.

[1]: # Import numpy
import numpy as np

# Import the Generator class
from bioverse.generator import Generator
from bioverse.constants import ROOT_DIR

# Import pyplot (for making plots later) and adjust some of its settings
from matplotlib import pyplot as plt
%matplotlib inline
plt.rcParams['font.size'] = 20.
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3.8.2 Loading the Generator

The first step in using Bioverse is to generate a simulated sample of planetary systems. This is accomplished with a
Generator object, of which two come pre-installed. Let’s open one of them and examine its contents.

[2]: # Open the transit mode generator and display its properties
generator = Generator('transit')
generator

[2]: Generator with 12 steps:
0: Function 'create_stars_Gaia' with 6 keyword arguments.
1: Function 'create_planets_SAG13' with 9 keyword arguments.
2: Function 'assign_orbital_elements' with 1 keyword arguments.
3: Function 'geometric_albedo' with 2 keyword arguments.
4: Function 'impact_parameter' with 1 keyword arguments.
5: Function 'assign_mass' with no keyword arguments.
6: Function 'compute_habitable_zone_boundaries' with no keyword arguments.
7: Function 'compute_transit_params' with no keyword arguments.
8: Function 'classify_planets' with no keyword arguments.
9: Function 'scale_height' with no keyword arguments.
10: Function 'Example1_water' with 3 keyword arguments.
11: Function 'Example2_oxygen' with 2 keyword arguments.

The list above shows each of the steps the Generator runs through in producing the sample of planetary systems. For
more information about an individual step, we can display it based on its index:

[3]: # Show more about the 'create_planets_SAG13' step
generator.steps[1]

[3]: Function 'create_planets_SAG13' with 9 keyword arguments.

Description:
Generates planets with periods and radii according to SAG13 occurrence rate␣

→˓estimates, but incorporating
the dependence of occurrence rates on spectral type from Mulders+2015.

Parameters
----------
d : Table

Table containing simulated host stars.
eta_Earth : float, optional

The number of Earth-sized planets in the habitable zones of Sun-like stars. All␣
→˓occurrence

rates are uniformly scaled to produce this estimate.
R_min : float, optional

Minimum planet radius, in Earth units.
R_max : float, optional

Maximum planet radius, in Earth units.
P_min : float, optional

Minimum orbital period, in years.
P_max : float, optional

Maximum orbital period, in years.
normalize_SpT : bool, optional

If True, modulate occurrence rates by stellar mass according to Mulders+2015.␣
→˓Otherwise, assume no

(continues on next page)
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dependency on stellar mass.
transit_mode : bool, optional

If True, only transiting planets are simulated. Occurrence rates are modified to␣
→˓reflect the R_*/a transit probability.

optimistic : bool, optional
If True, extrapolate the results of Mulders+2015 by assuming rocky planets are␣

→˓much more common around late-type M dwarfs. If False,
assume that occurrence rates plateau with stellar mass for stars cooler than ~M3.

optimistic_factor : float, optional
If optimistic = True, defines how many times more common rocky planets are␣

→˓around late-type M dwarfs compared to Sun-like stars.

Returns
-------
d : Table

Table containing the sample of simulated planets. Replaces the input Table.

Argument values:
eta_Earth = 0.075
R_min = 0.5
R_max = 14.3
P_min = 0.01
P_max = 10.0
normalize_SpT = True
transit_mode = True
optimistic = False
optimistic_factor = 5

Here we see a short description of the planet generation step as well as its keyword arguments, including eta_Earth.
This specifies the average number of Earth-sized planets in the habitable zones of Sun-like stars, and it is currently set
to 7.5% (following Pascucci et al. 2020). Let’s change this to a more optimistic value:

[4]: # Set eta_Earth = 15%
generator.set_arg('eta_Earth', 0.15)

Some arguments are shared by multiple functions - for example, the transit_mode argument tells a couple of functions
that only transiting planets are being simulated. By default, it is set to False, but we can change that like so:

[5]: # Set transit_mode = True for all functions that use it
generator.set_arg('transit_mode', True)

# We can also check on an argument's value as follows:
val = str(generator.get_arg('transit_mode'))
print("\nThe current value of transit_mode is {:s}".format(val))

The current value of transit_mode is True
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3.8.3 Running the Generator

Now, let’s use this Generator object to produce an ensemble of transiting planets within 100 parsecs.

[6]: sample = generator.generate(d_max=100)
print("Generated a sample of {:d} transiting planets including {:d} exo-Earth candidates.
→˓".format(len(sample), sample['EEC'].sum()))

Generated a sample of 17081 transiting planets including 1115 exo-Earth candidates.

Let’s plot the period and radius distribution of this planet sample:

[7]: fig, ax = plt.subplots(ncols=2, figsize=(16,8))

# Period histogram
P = sample['P']
bins = np.logspace(0, 4, 100)
ax[0].hist(P, bins=bins)
ax[0].set_xscale('log')
ax[0].set_yscale('log')
ax[0].set_xlabel('Period (d)', fontsize=24)
ax[0].set_ylabel('Number of planets', fontsize=24)

# Radius histogram
R = sample['R']
bins = np.logspace(-0.5,1,100)
ax[1].hist(R, bins=bins)
ax[1].set_xscale('log')
ax[1].set_yscale('log')
ax[1].set_xlabel('Radius ($R_\oplus$)', fontsize=24)
ax[1].set_ylabel('Number of planets', fontsize=24)

plt.subplots_adjust(wspace=0.3)
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3.8.4 Adding new steps

Finally, suppose you want to simulate a new planetary property in Bioverse. For example, suppose you want to assign
an ocean covering fraction to each planet (f_ocean_min < f_ocean < f_ocean_max for exo-Earth candidates and
f_ocean = 0 for others). We can accomplish this like so:

[8]: # Define a function that accepts and returns a Table object
def oceans(d, f_ocean_min=0, f_ocean_max=1):

# First, assign zero for all planets
d['f_ocean'] = np.zeros(len(d))

# Next, assign a random non-zero value for exo-Earth candidates
EEC = d['EEC']
d['f_ocean'][EEC] = np.random.uniform(f_ocean_min, f_ocean_max, size=EEC.sum())

# Finally, return the Table with its new column
return d

# Insert this function at the end of the Generator
generator.insert_step(oceans)

# Run the generator with f_ocean_min = 0.3 and f_ocean_max = 0.7
sample = generator.generate(d_max=100, f_ocean_min=0.3, f_ocean_max=0.7)

Now, let’s plot the distribution of ocean covering fractions for EECs and non-EECs:

[9]: fig, ax = plt.subplots(ncols=2, figsize=(16,8))

f_ocean = sample['f_ocean']
EEC = sample['EEC']

# EECs
bins = np.linspace(0., 1, 100)
ax[0].hist(f_ocean[EEC], bins=bins)
ax[0].set_title('exo-Earth candidates')
ax[0].set_ylabel('Number of planets')

# Non-EECs
ax[1].hist(f_ocean[~EEC], bins=bins)
ax[1].set_title('non-habitable planets')

plt.subplots_adjust(wspace=0.3)
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Of course, you may wish to change the oceans function later, and it would be tiring to add it to the Generator again
each time. Instead, we can point the Generator to a Python file containing your function, which must be saved under
bioverse/functions/.

[10]: # Reload the generator to erase the previously-added step
generator = Generator('transit')

# Write the function definition as a string
func = """
# Define a function that accepts and returns a Table object
def oceans(d, f_ocean_min=0, f_ocean_max=1):

# First, assign zero for all planets
d['f_ocean'] = np.zeros(len(d))

# Next, assign a random non-zero value for exo-Earth candidates
EEC = d['EEC']
d['f_ocean'][EEC] = np.random.uniform(f_ocean_min, f_ocean_max, size=EEC.sum())

# Finally, return the Table with its new column
return d

"""

# Save the function to a .py file
with open(ROOT_DIR+'/example_oceans.py', 'w') as f:

f.write(func)

# Insert this function into the Generator and specify the filename
generator.insert_step('oceans', filename='example_oceans.py')

# Verify that the new step has been added
generator
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[10]: Generator with 13 steps:
0: Function 'create_stars_Gaia' with 6 keyword arguments.
1: Function 'create_planets_SAG13' with 9 keyword arguments.
2: Function 'assign_orbital_elements' with 1 keyword arguments.
3: Function 'geometric_albedo' with 2 keyword arguments.
4: Function 'impact_parameter' with 1 keyword arguments.
5: Function 'assign_mass' with no keyword arguments.
6: Function 'compute_habitable_zone_boundaries' with no keyword arguments.
7: Function 'compute_transit_params' with no keyword arguments.
8: Function 'classify_planets' with no keyword arguments.
9: Function 'scale_height' with no keyword arguments.
10: Function 'Example1_water' with 3 keyword arguments.
11: Function 'Example2_oxygen' with 2 keyword arguments.
12: Function 'oceans' with 2 keyword arguments.

Now, any changes you make to the oceans function under example_oceans.pywill automatically be applied. Finally,
you will want to save this Generator under a new name, so that you don’t have to re-add the new step every time you
load Bioverse:

[11]: # Save the new Generator
generator.save('transit_oceans')

# Reload it
generator = Generator('transit_oceans')

The following lines of code will clean up the files created during this exercise:

[12]: import os
trash = [ROOT_DIR+'/Objects/Generators/transit_oceans.pkl', ROOT_DIR+'/example_oceans.py
→˓']
for filename in trash:

if os.path.exists(filename):
os.remove(filename)

The next example will translate this simulated sample of planetary systems into a dataset from a transit spectroscopy
survey.

3.9 Tutorial 2: Simulating survey datasets

In this tutorial, we will review how to use the Survey class to simulate an exoplanet survey, as well as how to configure
the Survey’s parameters.
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3.9.1 Setup

Let’s start by importing the necessary module from Bioverse.

[1]: # Import numpy
import numpy as np

# Import the Generator, ImagingSurvey, and TransitSurvey classes
from bioverse.generator import Generator
from bioverse.survey import ImagingSurvey, TransitSurvey

# Import pyplot (for making plots later) and adjust some of its settings
from matplotlib import pyplot as plt
%matplotlib inline
plt.rcParams['font.size'] = 20.

3.9.2 Loading the Survey object

Bioverse uses ImagingSurvey and TransitSurvey objects to simulate datasets from a direct imaging or transit spec-
troscopy exoplanet survey. Each has a ‘default’ option. Let’s take a look at the default imaging survey:

[2]: # Load the 'defalt' imaging survey
survey = ImagingSurvey('default')

# Display some key properties
print("Telescope diameter: {:.1f} meters".format(survey.diameter))
print("Inner working angle: {:.1f} lambda/D".format(survey.inner_working_angle))
print("Outer working angle: {:.1f} lambda/D".format(survey.outer_working_angle))
print("Faintest detectable contrast: {:.1E}".format(10**survey.contrast_limit))

Telescope diameter: 15.0 meters
Inner working angle: 3.5 lambda/D
Outer working angle: 64.0 lambda/D
Faintest detectable contrast: 2.5E-11

Next, the default transit survey:

[3]: # Load the transit survey
survey = TransitSurvey('default')

# Display some key properties
print("Effective telescope diameter: {:.1f} meters".format(survey.diameter))
print("Typical target star temperature: {:.0f} K".format(survey.T_st_ref))
print("Maximum survey lifetime: {:.1f} years".format(survey.t_max/365.25))

Effective telescope diameter: 50.0 meters
Typical target star temperature: 3300 K
Maximum survey lifetime: 10.0 years

Each survey is capable of conducting a set of measurements on the planets it observes. Let’s take a look at the transit
survey:

[4]: print(survey)
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TransitSurvey with the following parameters:
label: default
diameter: 50.0
t_max: 3652.5
t_slew: 0.0208
T_st_ref: 3300.0
R_st_ref: 0.315
D_ref: 50.0
d_ref: 50.0
N_obs_max: 1000
mode: transit

Conducts the following measurements
(0) Measures parameter 'L_st'
(1) Measures parameter 'R_st' with 5% precision
(2) Measures parameter 'M_st' with 5% precision
(3) Measures parameter 'T_eff_st' with 25.0 precision
(4) Measures parameter 'd'
(5) Measures parameter 'H'
(6) Measures parameter 'age' with 30% precision
(7) Measures parameter 'depth'
(8) Measures parameter 'T_dur'
(9) Measures parameter 'P' with 0.001 precision
(10) Measures parameter 'has_H2O'

Average time required: 7.5 d
(11) Measures parameter 'EEC'
(12) Measures parameter 'has_O2'

Average time required: 3.1 d

Each measurement is conducted in the order it is listed. Some have special properties:

Uncertainty: Some values are measured with approximately zero uncertainty (e.g. distance to the star), while others
are measured with poorer precision (e.g. +- 30% for the system’s age).

Conditions: Not every measurement is applied to every planet. For example, only approximately terrestrial-sized
planets orbiting between 0.1 to 10 AU (adjusted for stellar luminosity) are probed for the presence of H2O.

Total allocated time: Some characterizations require a large amount of time to complete. For example, for the typical
EEC target, the suryey requires ~3 days to detect the presence of ozone in the atmosphere.

3.9.3 Producing simulated datasets

The first step in a simulated Survey is to determine which simulated planets can actually be detected. Let’s start by
generating a sample of planets orbiting stars that might be targeted by LUVOIR. Note that the Generator used here does
not draw stars from a stellar mass function; instead, it inherits the sophisticated coronagraph yield modeling performed
by Stark et al. (2019).

[5]: # Generate a sample of planetary systems
generator = Generator('imaging')
sample = generator.generate()

Next, we use the imaging Survey object to determine which of these planets can be detected by LUVOIR.
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[6]: survey = ImagingSurvey('default')
detected = survey.compute_yield(sample)

print("Detected {:d} planets including {:d} exo-Earth candidates.".format(len(detected),␣
→˓detected['EEC'].sum()))

Detected 360 planets including 25 exo-Earth candidates.

Finally, we simulate a dataset from observations of all of the detected planets over the course of 10 years.

[7]: data = survey.observe(detected, t_total=10*365.25)

The values in data are imprecise measurements of the true values in detected. For example, let’s look at the fractional
measurement error on the semi-major axis.

[8]: error = (data['a']-detected['a'])/detected['a']
std = np.std(error)

plt.hist(error*100, bins=10)
plt.xlabel('% error on semi-major axis')
plt.axvline(-std, c='black', lw=5, linestyle='dashed')
plt.axvline(std, c='black', lw=5, linestyle='dashed')

[8]: <matplotlib.lines.Line2D at 0x7fa6e9cb3c10>

The standard deviation, highlighted by black lines, is about 10%. This is the estimated uncertainty in semi-major axis
determination following ~3 direct imaging revisits (Guimond & Cowan 2019).

Let’s repeat this exercise for the transit survey. This time we will use the stellar mass function to generate host stars,
and the quickrun() function to consolidate the steps.

[9]: # Load the Generator and Survey
generator = Generator('transit')
survey = TransitSurvey('default')

# Instead of this:
# sample = generator.generate(transit_mode=True)

(continues on next page)
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(continued from previous page)

# detected = survey.compute_yield(generator)
# data = survey.observe(sample, t_total=10*365.25)

# Use this:
sample, detected, data = survey.quickrun(generator, t_total=10*365.25) # note that␣
→˓transit_mode = True is automatically passed for transit surveys

Because the transit survey mostly observes low-mass stars, planet ages are difficult to constrain. The state of the art for
low-mass stellar age constraints is around 30% (for TRAPPIST-1; see Burgasser & Mamajek 2017)

[10]: error = (data['age']-detected['age'])/detected['age']
std = np.std(error)

plt.hist(error*100, bins=10)
plt.xlabel('% error on age')
plt.axvline(-std, c='black', lw=5, linestyle='dashed')
plt.axvline(std, c='black', lw=5, linestyle='dashed')

[10]: <matplotlib.lines.Line2D at 0x7fa6e5c0caf0>

3.9.4 Time constraints

In principle, the transit survey is capable of detecting and characterizing any transiting planet, provided it can observe
enough transits to build up the spectroscopic signal-to-noise ratio. In reality, the total number of transits it can observe
is limited by survey duration.

For example, a key observable parameter for terrestrial planets is the presence (or absence) of H2O in the atmosphere.
However, water clouds obscure almost all absorption from water vapor along the same sightlines. Using the Planetary
Spectrum Generator with sophisticated GCM models that include the effects of clouds, we have estimated that the
transit survey will require approximately ~7.5 days of in-transit observing time for a typical star, assuming a 50-meter
effective diameter. We incorporate this assumption into the ‘has_H2O’ measurement:

[11]: # Retrieve the time required for the has_H2O measurement
t_ref = survey.measurements['has_H2O'].t_ref

(continues on next page)
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(continued from previous page)

# Properties of the reference star
T_st_ref = survey.T_st_ref
R_st_ref = survey.R_st_ref

print("Reference star properties: R = {:.1f} R_sun and T_eff = {:.0f} K".format(R_st_ref,
→˓ T_st_ref))
print("Time required to characterize an Earth-like planet around this star: {:.1f} d".
→˓format(t_ref))

Reference star properties: R = 0.3 R_sun and T_eff = 3300 K
Time required to characterize an Earth-like planet around this star: 7.5 d

t_ref is scaled according to planet size, stellar size, stellar distance, atmospheric scale height, etc. to produce an
estimate for the observing time required for each individual planet.

Plotted below are the exposure times (and number of transit observations) required to find H2O in the atmospheres
of transiting EECs. The dashed lines indicate a generous upper limit of 1,000 combined transit observations of ~1 hr
duration.

[12]: sample, detected, data = survey.quickrun(generator, t_total=10*365.25)
t_exp, N_obs = survey.measurements['has_H2O'].compute_exposure_time(data[detected['EEC
→˓']])

fig, ax = plt.subplots(ncols=2, figsize=(16,8))

bins = np.logspace(np.log10(0.01), np.log10(np.amax(t_exp)), 30)
ax[0].hist(t_exp, bins=bins)
ax[0].set_xscale('log')
ax[0].set_xlabel('Exposure time (d)')
ax[0].set_ylabel('Number of EECs')
ax[0].axvline(1000/24, linestyle='dashed', lw=5, c='black')

bins = np.logspace(0, 5, 30)
ax[1].hist(N_obs, bins=bins)
ax[1].set_xscale('log')
ax[1].set_xlabel('Number of transit observations')
ax[1].axvline(survey.N_obs_max, linestyle='dashed', lw=5, c='black')

plt.subplots_adjust(wspace=0.3)
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As a result, most exo-Earth candidates cannot be observed during the survey. Since the required exposure time scales
with distance^2, the successfully observed targets tend to be much closer to Earth.

[13]: # Determines which EECs were observed vs not observed for atmospheric H2O
obs = ~np.isnan(data['has_H2O'])
EEC = detected['EEC']

bins = np.linspace(0, 150, 15)
plt.hist(data['d'][obs&EEC], density=True, histtype='step', lw=2, bins=bins, label=
→˓'Observed')
plt.hist(data['d'][~obs&EEC], density=True, histtype='step', lw=2, bins=bins, label='Not␣
→˓observed')
plt.xlabel('Distance (pc)')
plt.ylabel('Fraction of EECs')
plt.legend(loc='upper left')

plt.show()
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If we choose more optimistic assumptions about cloud cover, we can reduce t_ref and therefore increase the number
of observable EECs:

[14]: t_ref = np.arange(1, 16)
N_EEC = np.zeros(len(t_ref))
for i, tr in enumerate(t_ref):

survey.measurements['has_H2O'].t_ref = tr
sample, detected, data = survey.quickrun(generator, t_total=10*365.25)
EEC = detected['EEC']
N_EEC[i] = np.sum(~np.isnan(data['has_H2O'][EEC]))

plt.plot(t_ref, N_EEC, lw=3)
plt.xlim([0, 15])
plt.xlabel('Avg time required per target (d)')
plt.ylabel('Number of EECs\ncharacterized')

plt.show()
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Note that these exposure time considerations apply equally to imaging surveys. However, given low values of eta Earth
assumed (~7.5%), even a LUVOIR-like survey will likely be volume-limited in the number of EECs it can characterize.
For a given observatory configuration, the number of EECs it can spectroscopically characterize is mostly a function
of eta Earth. For highly time-intensive observations (e.g. rotational mapping), this may not be the case.

3.10 Tutorial 3: Calculating exposure times

The sample size of a simulated survey is often limited by the amount of observing time allotted for time-consuming
spectroscopic measurements. To impose this limit, Bioverse requires a realistic estimate for the exposure time needed to
conduct the measurement for a typical survey target, referred to as t_ref (see Exposure time calculations for details).
For the time being, t_ref must be calculated separately using third-party tools, though future updates may bring this
functionality into Bioverse.

This example will demonstrate one method of determining t_ref for the default transit survey, for which the typical
target orbits a mid-M dwarf at ~50 parsecs distance. We will use the Planetary Spectrum Generator (PSG) to produce
simulated spectra (and noise estimates) for our desired telescope configuration.
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3.10.1 Telescope and target properties

To begin, navigate to PSG and load the following template containing the telescope and target parameters: Templates/
transit_100hr.cfg. Next, click ‘Change Instrument’ to navigate to the instrument parameters interface:

These values reflect the capabilties of the Nautilus Space Observatory, a space telescope array whose total light-
collecting area would equal that of a single 50-meter aperture. As a basis for the noise calculation, we have set the
exposure time to 100 hr (approximately 50 transit observations) and the total throughput to 60%. Finally, we have
configured PSG to produce a spectrum of the transit depth in ppm.

Return to the main PSG interface and click ‘Change Object’ to view the properties of the planet and its star. For the
default transit survey, the reference planet is an Earth analog orbiting in the habitable zone of a mid-M dwarf at a
distance of 50 parsecs, and is observed at its transit midpoint:
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3.10.2 3D atmosphere model

By default, the transit_100hr.cfg template simulates a 1D model for an Earth-like atmosphere with no clouds
or hazes. In reality, clouds are expected to dilute the features of transit spectra of Earth-like planets. To accurately
simulate this, we have borrowed one of the 3D GCM models from Komacek & Abbot (2019), which contains realistic
3D abundance profiles of water and water ice clouds (as well as N2, H2O, and CO2) for a tidally-locked world whose
bulk properties and host star are similar to those of the above planet. Additionally, we have manually injected Earth-like
O2 and O3 abundance profiles into the model.

We can produce a simulated spectrum for this 3D model using the GLOBES module of PSG. Navigate to the GLOBES
module and load the following file containing the GCM data: Templates/transit.gcm. Select ‘Water’ under the
first drop-down menu, then rotate the globe to view the spatial distribution of water clouds along the terminator:

The strong dayside cloud cover is a result of tidal locking, which promotes more efficient convection. High-altitude
clouds near the terminator block sightlines into the lower atmosphere, reducing the amplitude of transit spectroscopy
signals from species below the cloud deck.
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3.10.3 Simulated transit spectra

Click ‘Generate 3D Spectra’ to simulate the transit spectrum for this model using the above telescope configuration:

The near-infrared absorption features of water vapor - typically 2-3 ppm strong - are significantly muted due to clouds.
However, the ozone feature around 0.6 microns remains visible, as most of the ozone resides above the cloud deck. To
estimate the detectability of this ozone feature, we must compare simulated spectra both with and without O3. Begin
by clicking ‘Spectrum’ to download the simulated spectrum and uncertainties (save it as spectrum_O3.dat). Then,
click the button to change the parameters of the atmosphere, and change the ozone abundance to zero:

Save this change at the bottom of the page, return to the GLOBES module, and simulate the spectrum again:

As expected, the ozone feature has vanished. Save this spectrum under a different filename (e.g., spectrum_noO3.
dat).
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3.10.4 Estimating t_ref

The final step is to calculate the detection SNR for the simulated 100 hr exposure time and scale that value to determine
the requirements for a 5-sigma detection. We can calculate this using compute_t_ref(). Assuming the spectra are
saved as spectrum_O3.dat and spectrum_noO3.dat:

from bioverse.util import compute_t_ref

t_ref = compute_t_ref(filenames=('spectrum_O3.dat', 'spectrum_noO3.dat'), t_exp=100, wl_
→˓min=0.4, wl_max=0.8)
print("Required exposure time: {:.1f} hr".format(t_ref))

Output: Required exposure time: 73.9 hr

To use this value in a Survey, edit the t_ref parameter of the has_O2 Measurement (also specify the effective wave-
length of the absorption feature as wl_eff. These values should be converted into days and microns, respectively:

from bioverse.survey import TransitSurvey

survey = TransitSurvey('default')
survey.measurements['has_O2'].t_ref = t_ref / 24.
survey.measurements['has_O2'].wl_eff = 0.6
survey.save()

Bioverse will now scale this value to determine the exposure time required to detect (or reject) ozone for each individual
planet, and prioritize planets appropriately.

3.11 Example 1: Finding the habitable zone

In Section 6 of Bixel & Apai (2021), we propose that the concept of a “habitable zone” could be validated by searching
for a region of space where planets with atmospheric water vapor are statistically more frequent.

In this example, you will use Bioverse to determine whether a LUVOIR-like imaging survey could test this hypothesis.

3.11.1 Setup

First, we’ll import the Bioverse code:

[1]: # Import numpy
import numpy as np

# Import the relevant modules
from bioverse.survey import ImagingSurvey
from bioverse.generator import Generator
from bioverse.hypothesis import Hypothesis
from bioverse import analysis

# Import pyplot (for making plots later) and adjust some of its settings
from matplotlib import pyplot as plt
%matplotlib inline
plt.rcParams['font.size'] = 20.

For this example, we will use the LUVOIR-like imaging survey and host star catalog.
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[2]: generator = Generator('imaging')
survey = ImagingSurvey('default')

3.11.2 Injecting the statistical effect

The first step is to inject the statistical effect we are searching for into the simulated planet population. Specifically, we
will simulate the likelihood that a planet has atmospheric water vapor as follows:

[3]: def habitable_zone_water(d, f_water_habitable=0.75, f_water_nonhabitable=0.01):
d['has_H2O'] = np.zeros(len(d),dtype=bool)

# Non-habitable planets with atmospheres
m1 = d['R'] > 0.8*d['S']**0.25
d['has_H2O'][m1] = np.random.uniform(0,1,size=m1.sum()) < f_water_nonhabitable

# exo-Earth candidates
m2 = d['EEC']
d['has_H2O'][m2] = np.random.uniform(0,1,size=m2.sum()) < f_water_habitable

return d

generator.insert_step(habitable_zone_water)

Next, let’s make a simulated dataset using this modified Generator object and the imaging Survey. Let’s start with a
relatively optimistic assumption that 75% of EECs are habitable and only 1% of non-EECs have “false positive” water
vapor.

[4]: sample, detected, data = survey.quickrun(generator, f_water_habitable=0.75, f_water_
→˓nonhabitable=0.01)

Let’s take a look at the simulated data set by plotting which planets have H2O versus their insolation. You might notice
that planets within the habitable zone (approx 0.3 < S < 1.1) are more likely to have water-rich atmospheres.

[5]: x, y = data['a_eff'], data['has_H2O']

# Now plot the water-rich/water-poor planets versus a_eff (in log-space)
fig, ax = plt.subplots(figsize=(16,2))
ax.scatter(x,y)
ax.set_xscale('log')
ax.set_yticks([0,1])
ax.set_yticklabels(['no H$_2$O','has H$_2$O'],fontsize=24)
ax.set_xlabel('Semi-major axis (scaled) (AU)',fontsize=24)

# Highlight the boundaries of the habitable zone (water-rich planets should be more␣
→˓common here)
ax.axvline(0.95,linestyle='dotted',c='black',lw=3)
ax.axvline(1.7,linestyle='dotted',c='black',lw=3)

plt.show()
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The effect injected by habitable_zone_water is apparent in the dataset. But is this effect of high enough statistical
significance to confirm the habitable zone hypothesis?

3.11.3 Defining the hypothesis

Next, we’ll create a new Hypothesis object representing the hypothesis that planets within one region of space are more
likely to have atmospheric water vapor than those outside of it. Since we do not know the planets’ sizes, the only
independent variable is the distance from the star modulated by the stellar luminosity, called a_eff (this is already
calculated). Likewise, the dependent variable is the presence or absence of water vapor, called has_H2O, which is
either 0 or 1. The relationship between these values is parameterized by a_inner (the inner edge of the habitable
zone in AU), delta_a (the width in AU), f_HZ (the fraction of HZ planets with H2O), and df_notHZ (the fraction of
non-HZ planets with H2O divided by f_HZ). By defining the four parameters in this way, we can easily avoid parameter
combinations inconsistent with our hypothesis (such as the fraction of non-HZ planets with H2O being higher than
f_HZ planets).

[6]: # Define the hypothesis in functional form
def f(theta, X):

a_inner, delta_a, f_HZ, df_notHZ = theta
in_HZ = (X > a_inner) & (X < (a_inner + delta_a))
return in_HZ * f_HZ + (~in_HZ) * f_HZ*df_notHZ

# Specify the names of the parameters (theta), features (X), and labels (Y)
params = ('a_inner', 'delta_a', 'f_HZ', 'df_notHZ')
features = ('a_eff',)
labels = ('has_H2O',)

In addition, we must consider the prior probability distribution of these parameters. Conservatively, we suppose the
inner edge might extend far inward, or be slightly farther from the Sun than Earth, and that the HZ could be very narrow
or very wide. Similarly, the fraction of planets with water vapor in the HZ and outside of it could span many orders
of magnitude. We therefore choose to impose log-uniform prior distributions on these parameters across the following
ranges:

0.1 < a_inner < 2 AU

0.01 < delta_a < 10 AU

0 < f_HZ < 1

0 < f_notHZ < 1

After deciding on the bounds, we can initialize the Hypothesis object.

[7]: bounds = np.array([[0.1, 2], [0.01, 10], [0.001, 1.0], [0.001, 1.0]])
h_HZ = Hypothesis(f, bounds, params=params, features=features, labels=labels, log=(True,␣
→˓True, True, True))
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We also need to define the null hypothesis against which h_HZ is to be compared. The null hypothesis says that the
fraction of planets with water vapor is independent of their orbits - this is a one parameter hypothesis where f_H2O,
the fraction of planets with water vapor, is the only parameter. Again, the prior distribution on f_H2O should be broad
(0 to 1) and log-uniform in shape. We can define this null hypothesis and attach it to h_HZ as follows:

[8]: def f_null(theta, X):
shape = (np.shape(X)[0], 1)
return np.full(shape, theta)

bounds_null = np.array([[0.001, 1.0]])
h_HZ.h_null = Hypothesis(f_null, bounds_null, params=('f_H2O',), features=features,␣
→˓labels=labels, log=(True,))

Now that the Hypothesis has been formed, we can formally test it using our simulated dataset. The fit() method will
automatically extract the appropriate variables from the data and estimate the Bayesian evidence for both the hypothesis
and null hypothesis using nested sampling. It will return the difference between the two i.e. the evidence in favor of
the habitable zone hypothesis.

[9]: results = h_HZ.fit(data)
print("The evidence in favor of the hypothesis is: dlnZ = {:.1f} (corresponds to p = {:.
→˓1E})".format(results['dlnZ'], np.exp(-results['dlnZ'])))

The evidence in favor of the hypothesis is: dlnZ = 13.1 (corresponds to p = 2.1E-06)

Generally speaking, a result where dlnZ > 3 is considered significant, so this was a succcessful test of the hypothesis.

Note for iPython/Jupyter users: We will need to reload the generator and h_HZ objects here to replace the ones you
have defined above. These will produce the same results, but the next code block uses the multiprocessing module
which is incompatible with functions defined in iPython.

[10]: # Reload `generator` and `h_HZ`
generator = Generator('imaging')
from bioverse.hypothesis import h_HZ

3.11.4 Computing statistical power

We have not yet tackled the most uncertain part of this analysis: namely, just how common are habitable worlds? The
fraction of Earth-sized planets in the habitable zone with atmospheric water vapor could far smaller than the assumed
75%, in which case it might be impossible to test the habitable zone hypothesis. To quantify the importance of this
assumption, we will need to repeat the previous analysis several times with different values of f_water_habitable.

The analysis module enables this through its test_hypothesis_grid() function, which loops the planet simula-
tion, survey simulation, and hypothesis test routines over a grid of input values. Let’s use it to iterate over values of
f_water_habitable ranging from 1% to 100%. For each value, we will repeat the analysis 20 times to average over
Poisson noise.

This may take a few minutes. To speed things up, we will run 8 processes in parallel (you may need to change this
number for an older CPU).

[11]: f_water_habitable = np.logspace(-2, 0, 10)
results = analysis.test_hypothesis_grid(h_HZ, generator, survey, f_water_habitable=f_
→˓water_habitable, t_total=10*365.25, processes=8, N=20)

100%|| 200/200 [01:53<00:00, 1.76it/s]

Now, let’s plot the average Bayesian evidence for the hypothesis as a function of f_water_habitable.

3.11. Example 1: Finding the habitable zone 45



Bioverse, Release 1.0

[12]: plt.plot(f_water_habitable, results['dlnZ'].mean(axis=-1), lw=5)
plt.xlabel('Fraction of EECs with H2O', fontsize=20)
plt.ylabel('$\Delta$lnZ', fontsize=20)
plt.axhline(3, lw=5, c='black', linestyle='dashed')
plt.xscale('log')

A more useful metric than the average Bayesian evidence is the survey’s “statistical power”, which is the likelihood that
the survey could successfully test the hypothesis under a certain set of assumptions. Run this cell to plot the statistical
power versus the fraction of EECs with water vapor.

[13]: power = analysis.compute_statistical_power(results, method='dlnZ', threshold=3)
plt.plot(f_water_habitable, power, lw=5)
plt.xlabel('Fraction of EECs with H2O', fontsize=20)
plt.ylabel('Statistical power', fontsize=20)
plt.axhline(0.8, lw=5, c='black', linestyle='dashed')
plt.xscale('log')
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We can see that a LUVOIR-like survey will be able to determine the existence of the habitable zone - but only if
habitable planets are relatively common.

3.12 Example 2: Detecting the age-oxygen correlation

In Section 7 of Bixel & Apai (2021) (and in Bixel & Apai 2020), we propose that Earth-like planets might have similar
atmospheric evolution to Earth’s, i.e. toward greater biogenic oxygen content over Gyr timescales. If so, this would
imply a positive “age-oxygen correlation” between the fraction of Earth-like planets with atmospheric oxygen and their
ages.

In this example, you will use Bioverse to determine whether a Nautilus-like transit spectroscopy survey could test this
hypothesis.

3.12.1 Setup

We will begin by importing modules from Bioverse

[1]: # Import numpy
import numpy as np

# Import the relevant modules
from bioverse.survey import TransitSurvey
from bioverse.generator import Generator
from bioverse.hypothesis import Hypothesis
from bioverse import analysis, plots

# Import pyplot (for making plots later) and adjust some of its settings
from matplotlib import pyplot as plt
%matplotlib inline
plt.rcParams['font.size'] = 20.

In this example, we will use the simulator for a transit spectroscopy survey with an effecting diameter of 50 meters.

[2]: generator = Generator('transit')
survey = TransitSurvey('default')

3.12.2 Injecting the statistical effect

We propose that the fraction of Earth-like planets with oxygen-rich atmospheres should increase over Gyr timescales.
We can simulate this in Bioverse using a function with two parameters:

• f_life: the fraction of exo-Earth candidates with life

• t_half: the “half-life” timescale over which inhabited planets become oxygenated

Let’s define a function and append it to the generator.

[3]: def oxygen_evolution(d, f_life=0.8, t_half=3.):
# First, assign no O2 to all planets
d['has_O2'] = np.zeros(len(d))

(continues on next page)

3.12. Example 2: Detecting the age-oxygen correlation 47

https://ui.adsabs.harvard.edu/abs/2021AJ....161..228B/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...896..131B/abstract
https://ui.adsabs.harvard.edu/abs/2019AJ....158...83A/abstract


Bioverse, Release 1.0

(continued from previous page)

# Calculate the probability that each EEC has O2 based on its age
EEC = d['EEC']
P = f_life * (1 - 0.5**(d['age'][EEC]/t_half))

# Randomly assign O2 to some EECs
d['has_O2'][EEC] = np.random.uniform(0, 1, EEC.sum()) < P

return d

generator.insert_step(oxygen_evolution)

Next, we can simulate a dataset and investigate the relationship between the ages and oxygen content of EECs. For
now, we assume f_life = 80% and t_half = 3 Gyr.

Note that the transit survey is more readily capable of detecting ozone than O2, as it has broader and deeper absorption
bands and mostly resides above the cloud deck. We assume O3 is a reliable proxy for O2.

[4]: # Create the planet sample
sample, detected, data = survey.quickrun(generator, f_life=0.8, t_half=3., t_
→˓total=10*365.25)

# Extract measured ages and the presence of oxygen
x, y = data['age'], data['has_O2']

# Now plot the oxygen-rich/oxygen-poor planets versus age
fig, ax = plt.subplots(figsize=(16, 2))
ax.scatter(x, y)
ax.set_yticks([0, 1])
ax.set_xlim([0,10])
ax.set_yticklabels(['no O$_2$','has O$_2$'],fontsize=24)
ax.set_xlabel('Age (Gyr)',fontsize=24)

plt.show()

As in Example 1, the expected trend appears to be present i.e. the presence of oxygen (via its proxy ozone) appears to
correlate with age. But is this trend statistically significant?
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3.12.3 Defining the hypothesis

To answer this, we will define a new Hypothesis. The functional form of this hypothesis will be the same as above
i.e. a two-parameter decay rate function. As in the previous example, we must specify the names of the hypothesis
parameters, independent variable (age), and dependent variable (has_O2) in the function signature. We again select
log-uniform prior distributions for the two parameters:

0.01 < f_life < 1

0.3 < t_half < 30 Gyr

[5]: def f(theta, X):
f_life, t_half = theta
return f_life * (1-0.5**(X/t_half))

params = ('f_life', 't_half')
features = ('age',)
labels = ('has_O2',)

bounds = np.array([[0.01, 1], [0.3, 30]])
h_age_oxygen = Hypothesis(f, bounds, params=params, features=features, labels=labels,␣
→˓log=(True, True))

We also need to define the null hypothesis, which states that the fraction of planets with O2 is (log-uniform) random
between 0.001 to 1 and independent of age:

[6]: def f_null(theta, X):
shape = (np.shape(X)[0], 1)
return np.full(shape, theta)

bounds_null = np.array([[0.001, 1.]])
h_age_oxygen.h_null = Hypothesis(f_null, bounds_null, params=('f_O2',),␣
→˓features=features, labels=labels, log=(True,))

We can calculate the Bayesian evidence supporting h_age_oxygen in favor of h_null from our simulated dataset.

[7]: results = h_age_oxygen.fit(data)
print("The evidence in favor of the hypothesis is: dlnZ = {:.1f} (corresponds to p = {:.
→˓1E})".format(results['dlnZ'], np.exp(-results['dlnZ'])))

The evidence in favor of the hypothesis is: dlnZ = 9.9 (corresponds to p = 4.9E-05)

The default nested sampling test reveals some compelling evidence in favor of the hypothesis, but it may not be the
most efficient test for this problem.

We can also use the Mann-Whitney U test to determine whether the typical age of planets with oxygen-rich atmospheres
is higher than that of oxygen-poor planets. This test should be more sensitive, as it makes no specific assumptions about
the functional form of the correlation (i.e. func defined above is not used).

[8]: results = h_age_oxygen.fit(data, method='mannwhitney')
print('Correlation detected with p = {:.1E} significance'.format(results['p']))

Correlation detected with p = 1.2E-05 significance

Typically, the Mann-Whitney test detects the correlation with even greater significance (i.e. lower p-values)

Note for iPython/Jupyter users: We will need to reload the generator and h_age_oxygen objects here to replace the
ones you have defined above. These will produce the same results, but the next code block uses the multiprocessing
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module which is incompatible with functions defined in iPython.

[9]: generator = Generator('transit')
from bioverse.hypothesis import h_age_oxygen

3.12.4 Computing statistical power

Thus far, we have assumed the fraction of planets with life to be f_life = 80% and t_half = 3 Gyr. If fewer planets are
inhabited, or if the evolutionary timescale is much longer than the maximum ages probed (~10 Gyr), then the correlation
will be more difficult to detect. Let’s test the sensitivity of our results to both of these parameters simultaneously using
the test_hypothesis_grid function.

Once again, we will use the more sensitive Mann-Whitney test to determine whether the correlation exists. This may
take up to ten minutes - reduce N_grid for quicker results.

[10]: N_grid = 8
f_life = np.logspace(-1, 0, N_grid)
t_half = np.logspace(np.log10(0.5), np.log10(50), N_grid)
results = analysis.test_hypothesis_grid(h_age_oxygen, generator, survey, method=
→˓'mannwhitney', f_life=f_life, t_half=t_half, N=20, processes=8, t_total=10*365.25)

100%|| 1280/1280 [10:18<00:00, 2.07it/s]

Now, we will use the plot_power_grid() function of the plots module to plot the statistical power of the survey
(i.e. the fraction of tests achieving p < 0.05 significance) versus both parameters.

[11]: plots.plot_power_grid(results, method='p', axes=('f_life', 't_half'), labels=('Fraction␣
→˓of EECs w/ life', 'Oxygenation timescale (Gyr)'), log=(True, True), levels=None)
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The “sweet spot” where high statistical power is achieved is where life is common (f_life > 50%) and the oxygenation
timescale falls within ~2-10 Gyr.

We can also investigate the survey’s sensitivity as a function of total survey time. Let’s try values from 0.1 to 10 years,
assuming f_life = 50% and t_half = 3 Gyr. This will take a few minutes.

[12]: t_total = np.logspace(-1, 1, 10) * 365.25
results = analysis.test_hypothesis_grid(h_age_oxygen, generator, survey, method=
→˓'mannwhitney', f_life=0.5, N=20, processes=8, t_total=t_total)

100%|| 200/200 [01:52<00:00, 1.77it/s]

[13]: fig, ax = plt.subplots(1, 2, figsize=(12, 4))

ax[0].plot(t_total, results['p'].mean(axis=-1), lw=5)
ax[0].set_xlabel('Total time (d)', fontsize=20)
ax[0].set_ylabel('p', fontsize=20)
ax[0].axhline(0.05, lw=5, c='black', linestyle='dashed')
ax[0].set_xscale('log')

power = analysis.compute_statistical_power(results, method='p', threshold=0.05)
ax[1].plot(t_total, power, lw=5)
ax[1].set_xlabel('Total time (d)', fontsize=20)

(continues on next page)
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(continued from previous page)

ax[1].set_ylabel('Statistical power', fontsize=20)
ax[1].axhline(0.8, lw=5, c='black', linestyle='dashed')
ax[1].set_xscale('log')

plt.subplots_adjust(wspace=0.5)

Approximately 1-2 years will be required to detect the correlation under these assumptions.

3.13 bioverse.analysis module

Provides functions for iterating over several simulations to compute statistical power and more.

bioverse.analysis.test_hypothesis_grid(h, generator, survey, N=10, processes=1, do_bar=True, bins=15,
return_chains=False, mw_alternative='greater',
method='dynesty', nlive=100, **kwargs)

Runs simulated surveys over a grid of survey and astrophysical parameters. Each time, uses the simulated data
set to fit the hypothesis parameters and computes the model evidence versus the null hypothesis.

bioverse.analysis.test_hypothesis_grid_iter(h, generator, survey, bins, return_chains, mw_alternative,
method, seed, nlive, kwargs)

Runs a single iteration for test_hypothesis_grid (separated for multiprocessing).

bioverse.analysis.compute_statistical_power(results, threshold=None, method='dlnZ')
Computes the statistical power of a hypothesis test, i.e. the fraction of simulated tests which pass a model
comparison significance threshold.

Parameters
• results (dict) – Output of test_hypothesis_grid.

• threshold (float, optional) – Significance threshold to enforce.

• method (('dAIC', 'dBIC', 'dlnZ', 'p', 'logp')) – Specifies which method to use.

Returns
power – Array of statistical power for each test in the results grid. Shape is
shape(results[method])[:-1].

Return type
float array
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bioverse.analysis.random_simulation(results, generator, survey, bins=15, mw_test=False,
mw_alternative='greater', method='dynesty', nlive=100,
return_chains=True, **grid_kwargs)

bioverse.analysis.compare_methods(h, data, methods=['dynesty', 'emcee'], **kwargs)

bioverse.analysis.number_vs_time(h, generator, survey, t_total, N=30, average=True, **kwargs)
Determines how many planets are characterized by the simulated survey versus time budget.

bioverse.analysis.number_vs_eta(h, generator, survey, eta_Earth, N=30, average=True, **kwargs)
Determines how many planets are characterized by the simulated survey versus eta Earth.

bioverse.analysis.number_vs_distance(h, generator, survey, d_max, N=30, average=True, **kwargs)
Determines how many planets are characterized by the simulated survey versus d_max.

3.14 bioverse.classes module

Contains class definitions.

class bioverse.classes.Object(label=None)
Bases: object

This class allows the Generator and Survey classes to be saved as .pkl files under the Objects/ directory.

Parameters
label (str, optional) – Name of the Generator or Survey. Default is to create a new object.

save(label=None)
Saves the Object as a template in a .pkl file under ./<object type>s/.

get_filename_from_label(label)

class bioverse.classes.Table(*args, **kwargs)
Bases: dict

Class for storing numpy arrays in a table-like format. Inherits dict. Each key is treated as a separate table column.

split_key(key)
Splits a key such as ‘Planets:Atmosphere:O2’ into (‘Planets’,’Atmosphere:O2’) and ensures that the first
key refers to a dict-like object.

keys()

Returns an array of keys instead of a dict_keys object, because I prefer it this way.

sort_by(key, inplace=False, ascending=True)
Sorts the table by the values in one column.

Parameters
• key (str) – Name of the column by which to sort the table.

• inplace (bool, optional) – If True, sort the table in-place. Otherwise return a new
sorted Table.

• ascending (bool, optional) – If True, sort from least to greatest.

Returns
sortd – A sorted copy of this table. Only returned if inplace is True.
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Return type
Table

get_stars()

Returns just the first entry for each star in the Table.

legend(keys=None,
filename='/home/docs/checkouts/readthedocs.org/user_builds/bioverse/envs/stable/lib/python3.7/site-
packages/bioverse-1.1.0-py3.7.egg/bioverse/Data/legend.dat')

Prints the description of parameter(s) in the Table.

Parameters
• keys (str or str array, optional) – Key or list of keys to describe. If not specified,

every key is described.

• filename (str, optional) – CSV file containing the list of parameter descriptions. De-
fault is ./legend.dat.

copy()

Returns a deep copy of the Table instead of a shallow copy (as in dict.copy). This way, if a column is filled
by objects (such as Atmosphere objects), a copy of those is returned instead of a reference.

append(table, inplace=True)
Appends another table onto this table in-place. The second table must have the same columns, unless this
table is empty, in which case the columns are copied over.

Parameters
• table (Table) – Table to be appended onto this one.

• inplace (bool, optional) – If True, append inplace and return None. If False, return
a new Table.

compute(key, force=False)
Computes the value of key using other values in the dictionary and a pre-defined formula. Useful for
translating measured values (e.g. ‘a’, ‘L_st’) into secondary data products (e.g., ‘S’). Will also propagate
uncertainties contained in self.error.

shuffle(inplace=True)
Re-orders rows in the Table. If inplace is False, return a new re-ordered Table instead.

pdshow()

If pandas is installed, show the Table represented as a DataFrame. Otherwise return an error.

to_pandas()

export Table into a pandas DataFrame

observed(key)
Returns the subset of rows for which self[key] is not nan.

class bioverse.classes.Stopwatch

Bases: object

This class uses the time module to profile chunks of code. Use the start() and stop() methods to start and stop
the Stopwatch, and the mark() methods to record a time. stop() and read() will report the total time elapsed as
well as the time between each step.

clear()
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mark(flag=None)

stop(flag=None)

read()

3.15 bioverse.constants module

Defines constant values used elsewhere in the code.

3.16 bioverse.custom module

Define new functions for planet simulation here. Function arguments should be provided a default value.

3.17 bioverse.functions module

Contains all functions currently used to simulate planetary systems. To define new functions, add them to custom.py.

bioverse.functions.luminosity_evolution(d)
Computes age-dependent luminosities based on the stellar evolution tracks in Baraffe et al. (1998).

Parameters
d (Table) – Table with stars. Has to have columns for mass and age.

Returns
d

Return type
Table containing age-dependent luminosities.

bioverse.functions.read_stars_Gaia(d, filename='gcns_catalog.dat', d_max=120.0, M_st_min=0.075,
M_st_max=2.0, R_st_min=0.095, R_st_max=2.15, T_min=0.0,
T_max=10.0, inc_binary=0, seed=42, M_G_max=None,
lum_evo=True)

Reads a list of stellar properties from the Gaia nearby stars catalog.

Parameters
• d (Table) – An empty Table object.

• filename (str, optional) – Filename containing the Gaia target catalog.

• d_max (float, optional) – Maximum distance to which to simulate stars, in parsecs.

• M_st_min (float, optional) – Minimum stellar mass, in solar units.

• M_st_max (float, optional) – Maximum stellar mass, in solar units.

• R_st_min (float, optional) – Minimum stellar radius, in solar units.

• R_st_max (float, optional) – Maximum stellar radius, in solar units.

• T_min (float, optional) – Minimum stellar age, in Gyr.

• T_max (float, optional) – Maximum stellar age, in Gyr.

• inc_binary (bool, optional) – Include binary stars? Default = False.
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• seed (int, optional) – seed for the random number generators.

• mult (float, optional) – Multiple on the total number of stars simulated. If > 1, dupli-
cates some entries from the LUVOIR catalog.

• M_G_max (float, optional) – Maximum Gaia magnitude of stars. Example:
M_G_max=9. keeps all stars brighter than M_G = 9.0.

• lum_evo (bool, optional) – Assign age-dependent stellar luminosities (based on ran-
domly assigned ages and stellar luminosity tracks in Baraffe et al. 1998.

Returns
d – Table containing the sample of real stars.

Return type
Table

bioverse.functions.create_stars_Gaia(d, d_max=150, M_st_min=0.075, M_st_max=2.0, T_min=0.0,
T_max=10.0, T_eff_split=4500.0, seed=42)

Reads temperatures and coordinates for high-mass stars from Gaia DR2. Simulates low-mass stars from the
Chabrier+2003 PDMF. Ages are drawn from a uniform distribution, by default from 0 - 10 Gyr. All other stellar
properties are calculated using the scaling relations of Pecaut+2013.

Parameters
• d (Table) – An empty Table object.

• d_max (float, optional) – Maximum distance to which to simulate stars, in parsecs.

• M_st_min (float, optional) – Minimum stellar mass, in solar units.

• M_st_max (float, optional) – Maximum stellar mass, in solar units.

• T_min (float, optional) – Minimum stellar age, in Gyr.

• T_max (float, optional) – Maximum stellar age, in Gyr.

• T_eff_split (float, optional) – Effective temperature (in Kelvin) below which to sim-
ulate stars from a PDMF instead of using Gaia data.

• seed (int or 1-d array_like, optional) – Seed for numpy’s RandomState. Must be
convertible to 32 bit unsigned integers.

Returns
d – Table containing the sample of simulated stars.

Return type
Table

bioverse.functions.read_stellar_catalog(d,
filename='/home/docs/checkouts/readthedocs.org/user_builds/bioverse/envs/stable/lib/python3.7/site-
packages/bioverse-1.1.0-
py3.7.egg/bioverse/Data/LUVOIR_targets.dat', d_max=30.0,
T_min=0.0, T_max=10.0, mult=1, seed=42)

Reads a list of stellar properties from the LUVOIR target catalog and fills in missing values.

Parameters
• d (Table) – An empty Table object.

• filename (str, optional) – Filename containing the LUVOIR target catalog.

• d_max (float, optional) – Maximum distance to which to simulate stars, in parsecs.

• T_min (float, optional) – Minimum stellar age, in Gyr.
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• T_max (float, optional) – Maximum stellar age, in Gyr.

• mult (float, optional) – Multiple on the total number of stars simulated. If > 1, dupli-
cates some entries from the LUVOIR catalog.

• seed (int or 1-d array_like, optional) – Seed for numpy’s RandomState. Must be
convertible to 32 bit unsigned integers.

Returns
d – Table containing the sample of simulated stars.

Return type
Table

bioverse.functions.create_planets_bergsten(d, R_min=1.0, R_max=3.5, P_min=2, P_max=100.0,
transit_mode=False, f_eta=1.0, seed=42)

Generates planets with periods and radii according to Bergsten+2022 occurrence rate estimates.

Parameters
• d (Table) – Table containing simulated host stars.

• R_min (float, optional) – Minimum planet radius, in Earth units.

• R_max (float, optional) – Maximum planet radius, in Earth units.

• P_min (float, optional) – Minimum orbital period, in days.

• P_max (float, optional) – Maximum orbital period, in days.

• transit_mode (bool, optional) – If True, only transiting planets are simulated.

• f_eta (float, optional) – Occurrence rate scaling factor. The default f_eta = 1 repre-
sents the occurrence rates in Bergsten+2022. A different factor will scale the overall occur-
rence rates accordingly.

• seed (int or 1-d array_like, optional) – Seed for numpy’s RandomState. Must be
convertible to 32 bit unsigned integers.

Returns
d – Table containing the sample of simulated planets. Replaces the input Table.

Return type
Table

bioverse.functions.create_planets_SAG13(d, eta_Earth=0.075, R_min=0.5, R_max=14.3, P_min=0.01,
P_max=10.0, normalize_SpT=True, transit_mode=False,
optimistic=False, optimistic_factor=5, seed=42)

Generates planets with periods and radii according to SAG13 occurrence rate estimates, but incorporating the
dependence of occurrence rates on spectral type from Mulders+2015.

Parameters
• d (Table) – Table containing simulated host stars.

• eta_Earth (float, optional) – The number of Earth-sized planets in the habitable zones
of Sun-like stars. All occurrence rates are uniformly scaled to produce this estimate.

• R_min (float, optional) – Minimum planet radius, in Earth units.

• R_max (float, optional) – Maximum planet radius, in Earth units.

• P_min (float, optional) – Minimum orbital period, in years.

• P_max (float, optional) – Maximum orbital period, in years.
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• normalize_SpT (bool, optional) – If True, modulate occurrence rates by stellar mass
according to Mulders+2015. Otherwise, assume no dependency on stellar mass.

• transit_mode (bool, optional) – If True, only transiting planets are simulated. Occur-
rence rates are modified to reflect the R_*/a transit probability.

• optimistic (bool, optional) – If True, extrapolate the results of Mulders+2015 by as-
suming rocky planets are much more common around late-type M dwarfs. If False, assume
that occurrence rates plateau with stellar mass for stars cooler than ~M3.

• optimistic_factor (float, optional) – If optimistic = True, defines how many times
more common rocky planets are around late-type M dwarfs compared to Sun-like stars.

• seed (int or 1-d array_like, optional) – Seed for numpy’s RandomState. Must be
convertible to 32 bit unsigned integers.

Returns
d – Table containing the sample of simulated planets. Replaces the input Table.

Return type
Table

bioverse.functions.create_planet_per_star(d, R_min=0.5, R_max=14.3)
Generates a single planet for each star with a radius drawn from a uniform distribution between R_min and
R_max

Parameters
• d (Table) – Table containing simulated host stars.

• R_min (float, optional) – Minimum planet radius, in Earth units.

• R_max (float, optional) – Maximum planet radius, in Earth units.

Returns
d – Table containing the sample of simulated planets. Replaces the input Table.

Return type
Table

bioverse.functions.name_planets(d)
Assign a name to each star and each planet based on its order in the system.

Parameters
d (Table) – Table containing the sample of simulated planets.

Returns
d – Table containing the sample of simulated planets.

Return type
Table

bioverse.functions.assign_orbital_elements(d, transit_mode=False, seed=42)
Draws values for any remaining Keplerian orbital elements. Eccentricities are drawn from a beta distribution
following Kipping et al. (2013).

Parameters
• d (Table) – Table containing the sample of simulated planets.

• transit_mode (bool, optional) – If True, only transiting planets are simulated, so cos(i)
< R_*/a for all planets.
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• seed (int or 1-d array_like, optional) – Seed for numpy’s RandomState. Must be
convertible to 32 bit unsigned integers.

Returns
d – Table containing the sample of simulated planets.

Return type
Table

bioverse.functions.impact_parameter(d, transit_mode=False)
Calculates the impact parameter/transit duration.

Parameters
• d (Table) – Table containing the sample of simulated planets.

• transit_mode (bool, optional) – If True, only transiting planets are simulated, so plan-
ets with b > 1 are discarded.

Returns
d – Table containing the sample of simulated planets.

Return type
Table

bioverse.functions.assign_mass(d, mr_relation='Wolfgang2016')
Determines planet masses using a probabilistic mass-radius relationship, following Wolfgang et al. (2016). Also
calculates density and surface gravity.

Parameters
• d (Table) – Table containing the sample of simulated planets.

• mr_relation (str, optional) – Mass-radius relationship to consider. Must be either
‘Wolfgang2016’ (Wolfgang et al., 2016) or ‘Zeng2016’ (Zeng et al., 2016).

Returns
d – Table containing the sample of simulated planets.

Return type
Table

bioverse.functions.classify_planets(d)
Classifies planets by size and instellation following Kopparapu et al. (2018).

Parameters
d (Table) – Table containing the sample of simulated planets.

Returns
d – Table containing the sample of simulated planets.

Return type
Table

bioverse.functions.compute_habitable_zone_boundaries(d)
Computes the habitable zone boundaries from Kopparapu et al. (2014), including dependence on planet mass.

Parameters
d (Table) – Table containing the sample of simulated planets.

Returns
d – Table containing the sample of simulated planets.
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Return type
Table

bioverse.functions.scale_height(d)
Computes the equilibrium temperature and isothermal scale height by assigning a mean molecular weight based
on size.

Parameters
d (Table) – Table containing the sample of simulated planets.

Returns
d – Table containing the sample of simulated planets.

Return type
Table

bioverse.functions.geometric_albedo(d, A_g_min=0.1, A_g_max=0.7, seed=42)
Assigns each planet a random geometric albedo from 0.1 – 0.7, and computes the contrast ratio when viewed at
quadrature.

Parameters
• d (Table) – Table containing the sample of simulated planets.

• A_g_min (float, optional) – Minimum geometric albedo.

• A_g_max (float, optional) – Maximum geometric albedo.

• seed (int or 1-d array_like, optional) – Seed for numpy’s RandomState. Must be
convertible to 32 bit unsigned integers.

Returns
d – Table containing the sample of simulated planets.

Return type
Table

bioverse.functions.effective_values(d)
Computes the “effective” radius and semi-major axis (i.e. assuming an Earth-like planet).

Parameters
d (Table) – Table containing the sample of simulated planets.

Returns
d – Table containing the sample of simulated planets.

Return type
Table

bioverse.functions.compute_transit_params(d)
Computes the transit depth of each planet.

Parameters
d (Table) – Table containing the sample of simulated planets.

Returns
d – Table containing the sample of simulated planets.

Return type
Table
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bioverse.functions.apply_bias(d, M_min=0.0, M_max=inf, S_min=0.0, S_max=inf, depth_min=0.0)
Apply detection biases and custom selections to the sample to generate.

Parameters
• d (Table) – Table containing the sample of simulated planets.

• M_min (float) – Minimum planet mass in Mearth

• M_max (float) – Maximum planet mass in Mearth

• S_min (float) – Minimum absolute instellation in W/m2

• S_max (float) – Maximum absolute instellation in W/m2

• depth_min (float) – Minimum transit depth

Returns
d – Table containing the new sample after applying the cuts.

Return type
Table

bioverse.functions.Example1_water(d, f_water_habitable=0.75, f_water_nonhabitable=0.1,
minimum_size=True, seed=42)

Determines which planets have water, according to the following model:

f(S,R) = f_water_habitable if S_inner < S < S_outer and 0.8 S^0.25 < R < 1.4
= f_water_nonhabitable if R > 0.8 S^0.25

Parameters
• d (Table) – Table containing the sample of simulated planets.

• f_water_habitable (float, optional) – Fraction of potentially habitable planets
(“exo-Earth candidates”) with atmospheric water vapor.

• f_water_nonhabitable (float, optional) – Fraction of non-habitable planets with
atmospheric water vapor.

• minimum_size (bool, optional) – Whether or not to enforce a minimum size for non-
habitable planets to have H2O atmospheres.

• seed (int or 1-d array_like, optional) – Seed for numpy’s RandomState. Must be
convertible to 32 bit unsigned integers.

Returns
d – Table containing the sample of simulated planets.

Return type
Table

bioverse.functions.Example2_oxygen(d, f_life=0.7, t_half=2.3, seed=42)
Applies the age-oxygen correlation from Example 2.

Parameters
• d (Table) – Table containing the sample of simulated planets.

• f_life (float, optional) – Fraction of EECs (Earth-sized planets in the habitable zone)
with life.

• tau (float, optional) – Timescale of atmospheric oxygenation (in Gyr), i.e. the age by
which 63% of inhabited planets have oxygen.
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• seed (int or 1-d array_like, optional) – Seed for numpy’s RandomState. Must be
convertible to 32 bit unsigned integers.

Returns
d – Table containing the sample of simulated planets.

Return type
Table

bioverse.functions.magma_ocean(d, wrr=0.005, S_thresh=280.0, simplified=False, diff_frac=0.54, f_rgh=1.0,
gh_increase=True, water_incorp=True)

Assign a fraction of planets global magma oceans that change the planet’s radius.

3.17.1 Parameters:

d
[Table] The population of planets.

wrr
[float, optional] water-to-rock ratio for Turbet+2020 model. Defines the amount of radius increase due to
a steam atmosphere. Possible values: [0, 0.0001, 0.001 , 0.005 , 0.01 , 0.02 , 0.03 , 0.04 , 0.05 ] (default:
0.01 = 1% water) If wrr=0, the pure rock MR relation of Zeng+2016 is applied.

S_thresh
[float, optional] threshold instellation for runaway greenhouse phase (in W/m2)

simplified
[bool, optional] increase the radii of all runaway greenhouse planets by the same fraction

diff_frac
[float, optional] fractional radius change in the simplified case. E.g., diff_frac = -0.10 is a 10% decrease.

f_rgh
[float, optional] fraction of planets within the runaway gh regime that have a runaway gh climate

gh_increase
[bool, optional] wether or not to consider radius increase due to runaway greenhouse effect (Turbet+2020)

water_incorp
[bool, optional] wether or not to consider water incorporation in the melt of global magma oceans (Dorn
& Lichtenberg 2021)

returns
d – Table containing the sample of simulated planets with new columns ‘has_magmaocean’.

rtype
Table
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3.18 bioverse.generator module

This module defines the Generator class and demonstrates how to create new Generators.

class bioverse.generator.Generator(label=None)
Bases: Object

This class executes a series of functions to generate a set of nearby systems.

Parameters
label (str, optional) – Name of the Generator. Leave as None to create a new Generator.

steps

List of Steps to be performed sequentially by the Generator.

Type
list of Step

copy()

Returns a deep copy of the Generator.

initialize(filename)
Creates a new program from a CSV file containing the function names and descriptions.

Parameters
filename (str) – Name of the CSV file from which to initialize the Generator.

update_steps(reload=False)
Loads or re-loads the keyword arguments and description of each step in the Generator.

Parameters
reload (bool) – Whether or not to reload the default values for the arguments.

insert_step(function, idx=None, filename=None)
Inserts a step into the program sequence at the specified index.

Parameters
• function (str or function) – Name of the function to be run by this step or the func-

tion itself.

• idx (int, optional) – Position in the program at which to insert the step. Default is -1
i.e. at the end.

• filename (str, optional) – Filename containing the function.

replace_step(new_function, idx, new_filename=None)
Replaces a step into the program sequence at the specified index.

Parameters
• new_function (str or function) – Name of the function to be run by this step or the

function itself.

• idx (int) – Position in the program at which to replace the step.

• new_filename (str, optional) – Filename containing the function.

get_arg(key)
Gets the default value of a keyword argument, and warns if there are multiple values.
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set_arg(key, value)
Sets the default value of a keyword argument for every step it applies to.

generate(d=None, timed=False, idx_start=0, idx_stop=None, **kwargs)
Runs the generator with the current program and returns a simulated set of stars and planets.

Parameters
• d (Table, optional) – Pre-existing table of simulated planets to be passed as input. If

not specified, an empty table is created.

• timed (bool, optional) – If True, times each step in the program and prints the results.

• idx_start (int, optional) – Specifies at which step in the program the Generator
should start.

• idx_stop (int, optional) – Specifies at which step in the program the Generator
should stop.

• **kwargs – Keyword argument(s) to be passed to the individual steps, e.g. d_max=20.
Can have unintended consequences if the keyword argument appears in more than one
step.

Returns
d – Table of simulated planets (plus host star parameters).

Return type
Table

class bioverse.generator.Step(function, filename=None)
Bases: object

This class runs one function for a Generator and saves its keyword argument values.

Parameters
• function (str or function) – Name of the function to be run or the function itself.

• filename (str, optional) – Name of the file containing the function for this step. If
None, looks in custom.py and functions.py.

description

Docstring for this step’s function.

Type
str

run(d, **kwargs)
Runs the function described by this step.

Parameters
• d (Table) – Table of simulated planets to be passed as the function’s first argument.

• **kwargs – Keyword argument(s) to override. Ignores arguments which don’t apply to
this step.

Returns
d – Updated version of the simulated planet table.

Return type
Table
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get_arg(key)
Returns the value of a keyword argument.

set_arg(key, value)
Sets the value of a keyword argument.

Parameters
• key (str) – Name of the argument whose value will be set.

• val – New value of the argument.

find_filename()

If the filename is not specified, look in custom.py followed by functions.py.

load_function(reload=False)
Loads or re-loads the function’s description and keyword arguments.

Parameters
reload (bool, optional) – Whether or not to reload the default values for the arguments.

bioverse.generator.reset_imaging_generator()

Re-creates the default Generator for imaging surveys.

bioverse.generator.reset_transit_generator()

Re-creates the default Generator for transit surveys.

3.19 bioverse.hypothesis module

Defines the Hypothesis class as well as two hypotheses used in Bixel & Apai (2021).

class bioverse.hypothesis.Hypothesis(f, bounds, params=(), features=(), labels=(),
lnprior_function=None, guess_function=None,
tfprior_function=None, log=None, h_null=None, **kwargs)

Bases: object

Describes a Bayesian hypothesis.

Parameters
• f (function) – Function describing the hypothesis. Must be defined as f(theta, X) where

theta is a tuple of parameter values and X is a set of independent variables. Returns the
calculated values of Y, the set of dependent variables for each entry in X.

• bounds (array) – Nx2 array describing the [min, max] limits of each parameter. These are
enforced even if a different prior distribution is defined.

• params (tuple of str, optional) – Names of the parameter(s) of the hypothesis.

• features (tuple of str, optional) – Names of the feature(s) or independent vari-
ables.

• labels (tuple of str, optional) – Names of the label(s) or dependent variables.

• lnprior_function (function, optional) – Used by emcee. Function which returns
ln(P_prior), must be defined as prior(theta). If None, assume a (log-)uniform distribution.

• guess_function (function, optional) – Used by emcee. Function which guesses
valid sets of parameters. Must be defined as guess_function(n), and should return an n x
m set of parameter guesses. If None, draw parameters randomly within bounds.
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• tfprior_function (function, optional) – Used by dynesty. Function which trans-
forms (0, 1) into (min, max) with the appropriate prior probability. If None, assume a (log-
)uniform distribution.

• log (bool array, optional) – Array of length N specifying which parameters should
be sampled by a log-uniform distribution.

• kwargs (key, value pairs) – Additional keyword arguments (e.g., boolean switches) for
the hypothesis function

guess_uniform(n, bounds)
Default guess function. Guesses uniformly within self.bounds.

guess(n)
Guesses a set of values for theta, preferably where P(theta) > -inf.

lnprior_uniform(theta)
Default (log-)uniform prior distribution, checks that all values are within bounds.

lnprior(theta)
Returns P(theta) (for emcee).

tfprior(u)

tfprior_uniform(u)
Transforms the unit cube u into parameters drawn from (log-)uniform prior distributions.

lnlike_binary(theta, x, y, _)
Likelihood function L(y | x, theta) if y is binary. The last argument is a placeholder.

lnlike_multivariate(theta, x, y, sigma)
Likelihood function L(y | x, theta) if y is continuous and has sigma uncertainty.

lnprob(theta, x, y, sigma)
Posterior probability function P(theta | x, y).

sample_posterior_dynesty(X, Y, sigma, nlive=100, nburn=None, verbose=False, sampler_results=False)
Uses dynesty to sample the parameter posterior distributions and compute the log-evidence.

sample_posterior_emcee(x, y, sigma, nsteps=500, nwalkers=32, nburn=100, autocorr=False)
Uses emcee to sample the parameter posterior distributions.

compute_AIC(theta_opt, x, y, sigma)
Computes the Akaike information criterion for optimal parameter set theta_opt.

compute_BIC(theta_opt, x, y, sigma)
Computes the Bayesian information criterion for optimal parameter set theta_opt.

get_observed(data)
Identifies which planets in the data set have measurements of the relevant features/labels.

get_XY(data)
Returns the X (features) and Y (labels) matrices for valid planets. Computes values as needed.

fit(data, nsteps=500, nwalkers=16, nburn=100, nlive=100, return_chains=False, verbose=False,
method='dynesty', mw_alternative='greater', return_data=False, sampler_results=False)
Sample the posterior distribution of h(theta | x, y) using a simulated data set, and compare to the null
hypothesis via a model comparison metric.

Parameters
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• data (Table) – Simulated data set containing the features and labels.

• nsteps (int, optional) – Number of steps per MCMC walker.

• nburn (int, optional) – Number of burn-in steps for the Monte Carlo walk.

• nlive (int, optional) – Number of live points for the nested sampler.

• return_chains (bool, optional) – Wether or not to return the Monte Carlo chains.

• verbose – Wether or not to generate extra output during the run.

• method (str, optional) – Which sampling method to use. Options: dynesty (default),
emcee, mannwhitney,

• mw_alternative (str, {'two-sided', 'less', 'greater'}, optional) – Defines
the alternative hypothesis. Default is ‘two-sided’. Let F(u) and G(u) be the cumulative
distribution functions of the distributions underlying x and y, respectively. Then the fol-
lowing alternative hypotheses are available:

– ’two-sided’: the distributions are not equal, i.e. F(u) G(u) for at least one u.

– ’less’: the distribution underlying x is stochastically less than the distribution underlying
y, i.e. F(u) > G(u) for all u.

– ’greater’: the distribution underlying x is stochastically greater than the distribution un-
derlying y, i.e. F(u) < G(u) for all u.

• return_data (bool) – Wether or not to return the data

• sampler_results (bool) – Wether or not to return the whole results object from dynesty
runs

Returns
results –

Dictionary containing the results of the model fit:
’means’ : mean value of each parameter’s posterior distribution ‘stds’ : std dev of each
parameter’s posterior distribution ‘medians’ : median value of each parameter’s poste-
rior distribution ‘UCIs’ : 2-sigma confidence interval above the median ‘LCIs’ : 2-sigma
confidence interval below the median ‘CIs’ : width of the +- 2 sigma confidence interval
about the median ‘AIC’ : Akaike information criterion compared to the null hypothesis (i.e.
AIC_null - AIC_alt) ‘BIC’ : Bayesian information criterion compared to the null hypoth-
esis ‘chains’ : full chain of MCMC samples (if return_chains is True)

Return type
dict

bioverse.hypothesis.f_null(theta, X)
Function for a generic null hypothesis. Returns (theta1, theta2, . . . ) for each element in X.

bioverse.hypothesis.f_HZ(theta, X)
Function for the habitable zone hypothesis.

bioverse.hypothesis.f_age_oxygen(theta, X)
Function for the age-oxygen correlation hypothesis.

bioverse.hypothesis.magma_ocean_hypo_exp(theta, X)
Define a hypothesis for a magma ocean-adapted radius-sma distribution that follows an exponential decay.

Parameters
• theta (array_like) – Array of parameters for the hypothesis. f_magma : float
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fraction of planets having a magma ocean

a_cut: float
cutoff effective sma for magma oceans. Defines position of the exponential decay.

lambda_a: float
Decay parameter for the semi-major axis dependence of having a global magma ocean.

• X (array_like) – Independent variable. Includes semimajor axis a.

Returns
Functional form of hypothesis

Return type
array_like

bioverse.hypothesis.magma_ocean_hypo_step(theta, X)
Define a hypothesis for a magma ocean-adapted radius-sma distribution following a step function. Tests the
hypothesis that the average planet size is smaller within the cutoff effective radius.

Parameters
• theta (array_like) – Array of parameters for the hypothesis. f_magma : float

fraction of planets having a magma ocean

a_cut: float
cutoff effective sma for magma oceans. Defines where the step occurs.

radius_reduction: float
The fraction by which a planet’s radius is reduced due to a global magma ocean.

R_avg
[float] Average radius of the planets _without_ magma oceans.

• X (array_like) – Independent variable. Includes semimajor axis a.

Returns
Functional form of hypothesis

Return type
array_like

bioverse.hypothesis.compute_avg_deltaR_deltaRho(stars_args, planets_args, transiting_only=True,
savefile=True)

Compute average radius and bulk density changes of the magma ocean-bearing planets as a function of water-to-
rock ratio. This will be used to inform the magma ocean hypothesis function and avoids lengthy computations
on each call of the hypothesis.

Parameters
• stars_args (dict) – dictionary containing parameters for star generation. Should contain

all non-default arguments for star-related generator modules.

• planets_args (dict) – As stars_args, but for planet-related generator modules.

• transiting_only (bool) – Consider only transiting planets?

• savefile (bool) – Save data to file in DATA_DIR + ‘avg_deltaR_deltaRho.csv’?

Returns
avg_deltaR_deltaRho – DataFrame containing the average radius/density differences.
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Return type
pandas DataFrame

bioverse.hypothesis.get_avg_deltaR_deltaRho(path=None)
Read pre-calculated radius and density differences.

bioverse.hypothesis.magma_ocean_f0(theta, X)
Define the null hypothesis that the radius distribution is random and independent of sma.

bioverse.hypothesis.magma_ocean_hypo(theta, X, gh_increase=True, water_incorp=True, simplified=False,
diff_frac=-0.1, parameter_of_interest='R', f_dR=None)

Define a hypothesis for a magma ocean-adapted radius-sma distribution following a step function.

Parameters
• theta (array_like) – Array of parameters for the hypothesis. S_thresh : float

threshold instellation for runaway greenhouse phase

wrr
[float] water-to-rock ratio. Will be discretized to the grid used in Turbet+2020, with pos-
sible values [0, 0.0001, 0.001 , 0.005 , 0.01 , 0.02 , 0.03 , 0.04 , 0.05 ].

f_rgh
[float] fraction of planets within the runaway gh regime that have a runaway gh climate

avg
[float] average planet radius or bulk density outside the runaway greenhouse region

• X (array_like) – Independent variable. Includes effective semimajor axis a_eff.

• gh_increase (bool, optional) – wether or not to consider radius increase due to run-
away greenhouse effect (Turbet+2020)

• water_incorp (bool, optional) – wether or not to consider water incorporation in the
melt of global magma oceans (Dorn & Lichtenberg 2021)

• simplified (bool, optional) – change the radii of all runaway greenhouse planets by
the same fraction

• diff_frac (float, optional) – fractional radius or bulk density change in the simplified
case. E.g., diff_frac = -0.10 is a 10% decrease.

• parameter_of_interest (str, optional) – ‘label’, i.e. the observable in which to
search for the pattern. Can be ‘R’ or ‘rho’.

• f_dR (scipy.interpolate.interpolate.interp1d, optional) – function that inter-
polates in the table containing pre-computed average radius and bulk density differences. If
not provided, the values will be computed for a grid of water-to-rock ratios (this might be
slow).

Returns
Functional form of hypothesis

Return type
array_like
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3.20 bioverse.plots module

bioverse.plots.plot(d, starID=None, order=None, fig=None, canvas=None)

bioverse.plots.plot_universe(d, N_max=100, ax=None, mark=None)

bioverse.plots.plot_system(d, starID, ax=None, mark=None)
Scatter plot for a single system with one or more planets.

Parameters
• d (Table) – Table of simulated planets.

• starID (int) – Unique identifier of this system in the table (d[‘starID’]).

• ax (Axes, optional) – Matplotlib Axes to plot the figure on. If not given, a new figure is
created.

• mark (int, optional) – Indicates which planet to circle (if any).

bioverse.plots.plot_spectrum(x, y, dy=None, xunit=None, yunit=None, lw=2)
Plots a spectrum with or without errorbars.

bioverse.plots.occurrence_by_class(d, compare=True)
Plots the number of planets per star as a function of size and instellation.

bioverse.plots.plot_binned_average(d, key1, key2, log=True, bins=10, method='mean',
match_bin_counts=False, ax=None, return_xy=False, xm=None,
ym=None, **kwargs)

Plots the average value of a parameter as a function of another parameter.

Parameters
• d (Table) – Table of simulated planets or measurements.

• key1 (str) – Name of the parameter with which to bin the data set.

• key2 (str) – Name of the parameter for which to calculate the average value.

• log (bool, optional) – Whether to bin the data in log-space.

• bins (int or float array, optional) – Number of bins or list of bin edges.

• method ({'mean','median'}, optional) – Whether to take the mean or median in each
bin.

• match_bin_counts (bool, optional) – If True, calculate bins with an equal number of
planets in each.

• xm (float array, optional) – X values of a model to be plotted along with the binned
data.

• ym (float array, optional) – Y values of a model to be plotted along with the binned
data.

• **kwargs – Keyword arguments, passed to matplotlib.pyplot.errorbar.

bioverse.plots.Example1_priority(generator, survey, fig=None, ax=None, show=True)
Plots the prioritization of targets according to a_eff and R (or R_eff).
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bioverse.plots.Example1_targets(data, fig=None, ax=None, show=True, cbar=True, bins=10, vmin=None,
vmax=None, cax=None, smooth_sigma=None)

Plots the distribution of targets in log(a_eff) and R (or R_eff).

bioverse.plots.Example1_dataset(data, a_inner=0.944911182523068, a_outer=1.643989873053573,
show=True, plot_model=True)

Plots data[‘has_H2O’] versus data[‘S’] for a simulated data set. Also plots the habitable zone boundaries.

bioverse.plots.Example2_priority(generator, survey, fig=None, ax=None, show=True)

bioverse.plots.Example2_targets(data, fig=None, ax=None, bins=10, show=True)

bioverse.plots.Example2_dataset(data, flife=0.8, thalf=5.0, show=True, plot_model=False)
Plots data[‘has_O2’] versus data[‘age’] for a simulated data set. Also plots f(O2 | life)(t).

bioverse.plots.Example2_model(show=True, t_half=2.3, f_life=0.75)
Plots the distribution of O2/O3-rich planets versus age.

bioverse.plots.compare_posteriors(results_dict, **kwargs)

bioverse.plots.plot_posterior(chains, params=None, bounds=None, log=None, nbins=30,
plot_model=True, show=True, fig=None, axes=None, **hist_kwargs)

Plots the posterior distributions of a set of parameters.

Parameters
• chains (float array (NxM)) – N samples from the posterior distribution of each of M

parameters

• params (string list, optional) – List of M parameter names in the order that they
appear in chains. Use None to designate which parameters to exclude. If not specified, label
as theta_0, theta_1, . . .

• bounds (float array (Mx2), optional) – Describes each parameter’s min/max val-
ues.

• log (tuple, optional) – Length M tuple of True/False values indicating which posterior
distributions should be plotted in log-scale.

• nbins (int, optional) – Number of bins the posterior distribution plot.

• plot_model (bool, optional) – If True, overplot a normal distribution with the same
mean and variance as the sample.

• show (bool, optional) – If True, display the plot. Otherwise, return the figure and axes.

• fig (Figure, optional) – Figure in which to create the plot. axes must also be passed.

• axes (Axis list, optional) – List of Axis objects in which to create the plots. fig must
also be passed.

Returns
fig, axes – Figure and flattened array of Axes objects containing the plots. Only returned if show
if False.

Return type
Figure, Axes array

bioverse.plots.plot_power_grid(results, axes=('f_water_habitable', 'f_water_nonhabitable'), log=(True,
True), labels=None, cbar=True, method='dlnZ', threshold=None,
smooth_sigma=None, fig=None, ax=None, show=True, levels=[15, 60, 80],
cmap='Greens', zoom_factor=0, **grid_kwargs)
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bioverse.plots.plot_requirements_grid(results, axes=('f_water_habitable', 'f_water_nonhabitable'),
variable='t_total', log=(True, True), labels=None,
var_label=None, levels=None, method='dlnZ', threshold=None,
smooth_sigma=None, show=True, min_power=0.8, fmt=' %.0f d ',
N_key='N_EEC', vmin=None, vmax=None, fig=None, ax=None,
cmap='Greens_r', zoom_factor=0, **grid_kwargs)

bioverse.plots.plot_habitable_zone_accuracy(results, a_inner=0.931, a_outer=1.674,
smooth_sigma=None)

bioverse.plots.plot_Example1_constraints(results, fig=None, ax=None, show=True, c='black', lw=1.0,
truth=True, **grid_kwargs)

bioverse.plots.plot_Example2_constraints(results, fig=None, ax=None, show=True, c='black', lw=1.0,
**grid_kwargs)

bioverse.plots.image_contour_plot(x, y, z, colorbar=True, labels=None, levels=None, fmt=' %.0f ', ticks=4,
vmin=None, vmax=None, linecolor='black', log=None, fig=None,
ax=None, return_ctr=False, zoom_factor=None, cmap='Greens',
plus=False, smooth_sigma=0)

Plots z(x, y) with a colorbar and contours.

bioverse.plots.plot_number_vs_time(results, smooth_sigma=None, exclude=['N_pl', 'N_EEC'],
**grid_kwargs)

bioverse.plots.plot_precision_grid(results, param='a_inner', axes=('f_water_habitable',
'f_water_nonhabitable'), labels=None, cbar=True, method='dlnZ',
threshold=None, smooth_sigma=None, show=True, half=False,
levels=3, log=None, fmt='%.2f AU', **grid_kwargs)

bioverse.plots.plot_precision(results, params=('a_outer', 'a_inner'), axes=('f_water_habitable',
'f_water_nonhabitable'), labels=None, cbar=True, method='dlnZ',
threshold=None, smooth_sigma=None, show=True, half=False, levels=([1.0,
3.0], [0.2, 0.6]), log=None, fmt=' %.2f AU ', **grid_kwargs)

bioverse.plots.plot_simulation_result(results, log=True, method='dlnZ', **grid_kwargs)

bioverse.plots.plot_clear_cloudy_spectra(x, y_clr, y_cld, f_clouds=0.75, lw=3, bands=[], c=[],
alpha=0.3, legend=True, xlim=None, ymax=None, fig=None,
ax=None)

3.21 bioverse.survey module

class bioverse.survey.Survey(label: Optional[str] = None, diameter: float = 15.0, t_max: float = 3652.5,
t_slew: float = 0.1, T_st_ref: float = 5788.0, R_st_ref: float = 1.0, D_ref: float
= 15.0, d_ref: float = 10.0)

Bases: dict, Object

Describes an exoplanet survey, including methods for creating simulated datasets. This class should not be called
directly; instead use ImagingSurvey or TransitSurvey.

label: str = None
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diameter: float = 15.0

t_max: float = 3652.5

t_slew: float = 0.1

T_st_ref: float = 5788.0

R_st_ref: float = 1.0

D_ref: float = 15.0

d_ref: float = 10.0

add_measurement(key, idx=None, **kwargs)
Adds a Measurement to the Survey.

Parameters
• key (str) – Name of the measured parameter.

• idx (int) – Position in the measurement sequence. By default, it is placed at the end.

• **kwargs – Keyword arguments passed to Measurement.__init__().

move_measurement(key, idx)
Moves a Measurement to the designated position in the sequence.

Parameters
• key (str) – Name of the measured parameter.

• idx (int) – Position in the measurement sequence to which to move the Measurement.

quickrun(generator, t_total=None, N_sim=1, **kwargs)
Convenience function that generates a sample, computes the detection yield, and returns a simulated data
set.

Parameters
• generator (Generator) – Generator used to generate the planet population.

• t_total (float, optional) – Total amount of observing time for any measurements
with a limited observing time.

• N_sim (int, optional) – If greater than 1, simulate the survey this many times and
return the combined result.

• **kwargs – Keyword arguments passed to Generator.generate().

Returns
• sample (Table) – Table of all simulated planets.

• detected (Table) – Table of planets detected by the Survey.

• data (Table) – Simulated data set produced by the Survey.

• error (Table) – Uncertainties on the measurements in data.

observe(y, t_total=None, data=None, error=None, demographics=True)
Returns a simulated data set for a Table of simulated planets.

Parameters
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• y (Table) – Table containing the set of planets to be observed, usually the detection yield
of the survey.

• t_total (float, optional) – Sets the total time allocated to all Measurements.

• data (Table, optional) – Pre-existing Table in which to store the new measurements.

• error (Table, optional) – Pre-existing Table containing uncertainties on data values.

• demographics (Bool, optional) – compute some population-level statistics after tak-
ing all measurements

Returns
data – Table of measurements made by the Survey, with one row for each planet observed.

Return type
Table

class bioverse.survey.ImagingSurvey(label: str = None, diameter: float = 15.0, t_max: float = 3652.5,
t_slew: float = 0.1, T_st_ref: float = 5788.0, R_st_ref: float = 1.0,
D_ref: float = 15.0, d_ref: float = 10.0, inner_working_angle: float =
3.5, outer_working_angle: float = 64, contrast_limit: float = -10.6,
mode: str = 'imaging')

Bases: Survey

inner_working_angle: float = 3.5

outer_working_angle: float = 64

contrast_limit: float = -10.6

mode: str = 'imaging'

compute_yield(d, wl_eff=0.5, A_g=0.3)
Computes a simple estimate of the detection yield for an imaging survey. Compares the contrast ratio
and projected separation of each planet when observed at quadrature to the contrast limit and inner/outer
working angles of the survey. Planets that satisfy these criteria are considered to be detected.

Parameters
• d (Table) – Table of all simulated planets which the survey could attempt to observe.

• wl_eff (float, optional) – Effective wavelength of observation in microns (used for
calculating the IWA/OWA).

• A_g (float, optional) – Geometric albedo of each planet, ignored if ‘A_g’ is already
assigned.

Returns
yield – Copy of the input Table containing only planets which were detected by the survey.

Return type
Table

compute_scaling_factor(d)
Computes the scaling factor for the reference exposure time in imaging mode for all planets in d.

class bioverse.survey.TransitSurvey(label: str = None, diameter: float = 15.0, t_max: float = 3652.5,
t_slew: float = 0.1, T_st_ref: float = 5788.0, R_st_ref: float = 1.0,
D_ref: float = 15.0, d_ref: float = 10.0, N_obs_max: int = 1000,
mode: str = 'transit')

Bases: Survey
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N_obs_max: int = 1000

mode: str = 'transit'

compute_yield(d)
Computes a simple estimate of the detection yield for a transit survey. All transiting planets are considered
to be detected.

Parameters
d (Table) – Table of all simulated planets which the survey could attempt to observe.

Returns
yield – Copy of the input table containing only planets which were detected by the survey.

Return type
Table

compute_scaling_factor(d)
Computes the scaling factor for the reference exposure time in transit mode for all planets in d.

class bioverse.survey.Measurement(key, survey, precision=0.0, t_total=None, t_ref=None, priority={},
wl_eff=0.5, debias=True)

Bases: object

Class describing a simple measurement to be applied to a set of planets detected by a Survey.

Parameters
• key (str) – Name of the parameter that will be measured.

• survey (Survey) – Survey associated with this Measurement.

• precision (str or float, optional) – Precision of measurement, e.g. ‘10%’ or 0.10
units. Default is zero.

• t_ref (float, optional) – Amount of time required to perform the measurement for a
typical target, in days.

• t_total (float, optional) – Total amount of time allocated for this measurement, in
days.

• priority (dict, optional) – Describes how target weights are assigned based on target
properties. For example {‘R’:[[1, 2, 5]]} assigns weight = 5 to planets with 1 < R < 2.

• wl_eff (float, optional) – Effective wavelength of observation, used to estimate SNR.

• debias (bool, optional) – (Transit mode) If True, weight targets by a/R_* to cancel the
transit detection bias.

measure(detected, data=None, error=None, t_total=None)
Produces the measurement for planets in a Table and places them into a data Table.

Parameters
• detected (Table) – Table containing detected planets.

• data (Table, optional) – Table in which to store the measured values for each planet.
If not given, then a new table is created.

• error (Table, optional) – Table in which to store the measurement uncertainties. Must
be given if data is given.

• t_total (float, optional) – Total amount of time allocated to this Measurement. If
None, use self.t_total.
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Returns
• data (Table) – Table containing the measured values for each planet.

• error (Table) – Table containing the measurement uncertainties for each planet.

set_weight(key, weight, min=None, max=None, value=None)
Adds a new rule for determining target weight. weight can be set for targets whose parameter fall within
(min, max) or exactly match value.

Parameters
• key (str) – Name of the parameter being checked.

• weight (float) – Weight of targets that meet the conditions.

• min (float, optional) – Minimum value of range. Default is -inf.

• max (float, optional) – Maximum value of range. Default is +inf.

• value (int or str or bool, optional) – Exact value with which to compare.

compute_observable_targets(data, t_total=None)
Determines which planets are observable based on the total allotted observing time.

Parameters
• data (Table) – Table of data values already measured for these planets.

• t_total (float, optional) – Total observing time for this measurement. If None, use
self.t_total.

Returns
observable – Specifies which planets in the table are observable within the allotted time.

Return type
bool array

compute_exposure_time(d)
Computes the exposure time and number of observations required to characterize each planet in d.

compute_overhead_time(d, N_obs=1)
Computes the overheads associated with each observation.

compute_weights(d)
Computes the priority weight of each planet in d.

compute_debias(d)
Removes detection biases from the data set (transit mode only).

perform_measurement(x)
Simulates measurements of the parameter from a set of true values. Measurements are clipped to +- 5
sigma of the true value to avoid non-physical results.

Parameters
x (array) – Array of true values on which to perform the measurement.

Returns
xm – Array of measured values with the same length and type as x.

Return type
array
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bioverse.survey.reset_imaging_survey()

Re-creates the default imaging survey.

bioverse.survey.reset_transit_survey()

Re-creates the default transit survey.

3.22 bioverse.util module

Miscellanous functions used elsewhere in the code.

bioverse.util.bar(arg, do_bar=True)
Given an iterable, returns a progress bar if tqdm is installed. Otherwise, returns the iterable.

Parameters
• arg (iterable) – Iterable for which to return a progress bar.

• do_bar (bool) – If False, return arg and don’t display a progress bar.

Returns
tqdm – If tqdm is installed, return a progress bar formed from arg. Otherwise, just return arg.

Return type
iterable

bioverse.util.get_type(x)

bioverse.util.is_bool(a)

bioverse.util.as_tuple(x)
Returns the parameter as a tuple.

bioverse.util.import_function_from_file(function_name, filename)

bioverse.util.get_planet_colors(d)

bioverse.util.cycle_index(vals, val, delta)

bioverse.util.nan_fill(a, dtype=None)

bioverse.util.get_order(N)

bioverse.util.mask_from_model_subset(pl, subset)

bioverse.util.compute_bin_centers(bins)
Given a set of N bin edges, returns N-1 bin centers and half-widths.

bioverse.util.compute_eta_Earth(d, by_type=True)
Computes the value of eta Earth for a simulated sample of planets. Note this could be inaccurate if there are
stars without planets which are usually not listed in the simulated sample, although the algorithm does attempt
to correct for this.

Parameters
• d (Table) – Simulated sample of planets.

• by_type (bool, optional) – If True, calculate eta Earth separately for each spectral type.
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bioverse.util.compute_occurrence_multiplier(optimistic=False, optimistic_factor=3, N_pts=30)
Determines the multiplier for occurrence rates and planet periods as a function of stellar mass.

bioverse.util.update_stellar_catalog(d_max=100,
filename='/home/docs/checkouts/readthedocs.org/user_builds/bioverse/envs/stable/lib/python3.7/site-
packages/bioverse-1.1.0-py3.7.egg/bioverse/Data/Gaia.csv')

Updates the catalog of nearby sources from Gaia DR2 and saves it to a file. Requires astroquery.

bioverse.util.get_xyz(pl, t=0, M=None, n=3)

bioverse.util.normal(a, b, xmin=None, xmax=None, size=1)

bioverse.util.binned_average(x, y, bins=10, match_counts=True)
Computes the average value of a variable in bins of another variable.

Parameters
• x (float array) – Array of independent values along which to perform the binning.

• y (float array) – Array of dependent values to be averaged.

• bins (int or float array, optional) – Number of bins or array of bin edges.

• match_counts (bool, optional) – If True, adjust the bin sizes so that an equal number
of data points fall in each bin. Passing an array of bin edges for bins will override this setting.

Returns
• bins (float array) – Array of bin edges.

• values (float array) – Average value of y in each bin.

• errors (float array) – Uncertainty on values in each bin, i.e. the standard error on the mean.

bioverse.util.compute_t_ref(filenames, t_exp, wl_min, wl_max, threshold=5, usecols=(0, 1, 2))
Computes t_ref for the detection of a spectroscopic feature. User must first use PSG or other tools to simulate
spectra of the reference target with and without the feature of interest.

Parameters
• filenames ((str, str)) – Points to two PSG output spectra files - one where the atmo-

sphere contains the species of interest, and one where it does not (the order does not matter).

• t_exp (float) – Exposure time for the PSG simulations - must be identical for both.

• wl_min (float) – Minimum wavelength of the absorption feature, same units as the PSG
output.

• wl_max (float) – Maximum wavelength of the absorption feature.

• threshold (float, optional) – SNR threshold for a confident detection.

• usecols ((int, int, int), optional) – Specifies the column numbers corresponding
to (wavelength, radiance, uncertainty) in the input files.

Returns
t_ref – Exposure time required to reach the targeted detection SNR, same units as t_exp.

Return type
float

bioverse.util.compute_logbins(binWidth_dex, Range)
Compute the bin edges for a logarithmic grid.

Parameters
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• binWidth_dex (float) – width of bins in log space (dex)

• Range (Tuple) – range for parameter

Returns
bins – bins for one dimension

Return type
array

Example

>>> binWidth_dex = 1.0
>>> Range = (10., 1000.)
>>> compute_logbins(binWidth_dex, Range)
array([ 10., 100., 1000.])

bioverse.util.interpolate_df(xvals, df, xcol, ycol)
Interpolate values in a pandas DataFrame.

Parameters
• xvals (iterable) – input values for which to search in the x column

• df (pandas DataFrame) – dataframe in which to interpolate. Expected to be sorted by
xcol.

• xcol (str) – column with values we’re comparing to xval

• ycol (str) – column with interpolated output values

Returns
y_interp – interpolated values

Return type
iterable

bioverse.util.S2a_eff(S)
Convert instellation in W/m2 to solar-equivalent semi-major axis.

bioverse.util.a_eff2S(a_eff )
Convert solar-equivalent semi-major axis to instellation in W/m2.

bioverse.util.compute_moving_average(d, window=25)
Compute rolling mean of radius and density and their uncertainties, ordered by instellation.

Parameters
• d (Table) – Table containing the sample of simulated planets.

• window (int, optional) – window size of the rolling mean

Returns
d – Table containing new columns for rolling mean of radius, density.

Return type
Table

bioverse.util.get_ideal_bins(data, method='freedman')
return optimal bins for a given 1D data set
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bioverse.util.binned_stats(df, x_param, y_param, bins=None, statistic='mean', scale='log')
Compute a binned statistic of parameter y’s mean with respect to bins in parameter x.

bioverse.util.compute_binned_average(d, x_param='S_abs', y_params=['R', 'rho'])
Compute mean of radius and density and their uncertainties, binned in instellation.

Parameters
• d (Table) – Table containing the sample of simulated planets.

• x_param (str) – Parameter axis along which we want to bin.

• y_params (str or iterable) – Parameter(s) on which the binned average will be com-
puted.

Returns
d – Table containing new columns for rolling mean of radius, density.

Return type
Table

bioverse.util.generate_generator(g_args, stars_only=False, **kwargs)
Helper function to create a planet generator.

bioverse.util.find_distance4samplesize(N_target, g_args, tolerance=2, max_iterations=10, h=5)
Iteratively find the distance d_max needed to achieve a specified planet sample size. Uses the Secant method for
root-finding. Sort of.

Parameters
• N_target (int) – target sample size

• g_args (dict) – arguments for generator object

• tolerance (int) – range around N_target into which we need to land

• max_iterations (int) – maximum number of iterations

• h (int) – distance delta (in pc) used for initial guess

Returns
• N (int) – closest sample size achieved

• d0 (float) – distance at closest sample size
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